The hole-transporting materials (HTMs) and cathode buffer layer (CBL) have important effect on the performance of perovskite solar cells (PSCs). In this project, the “click” chemistry reaction is utilized to controllable synthesis of a serials of chemical compounds with different topological structures and used as HTMs, which cores are based on triazole or tetrazole, and the comparison of the optics, electrics and thermotics performances, such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbitals (LUMO) energy levels, UV-vis absorption, hole mobility, glass-transition temperature, and so on, are carried out between the isomers of 1,2,3-triazole and 1,2,4-triazole, the isomers of 1,5-disubstituted tetrazole and 2,5-disubstituted tetrazole, as well as the materials possess similar structure but with different cores of triazole and tetrazole, the photovoltaic performance of PSCs are explored, and explained the impacts of the substituent position and the number of nitrogen atoms on the performances of HTMs, then build the transport theory; thanks to the Michael addition reaction, the hyperbranched polymer mimic the structure of polyethyleneimine ethoxylated (PEIE), which including the terminal hydroxyethyl group and thiol group simultaneously, is synthetized and used as CBL, and it is expected to possess not only the property of reducing the work-function of electrode, which similar to PEIE, and by the presence of terminal thiol groups, formation of Ag-S covalent bonds delivers several features, including low contact resistance between the active layer and the electrode, low percolation threshold of Ag film, and so on. This project will provide important theoretical basis and technical support to the development of new materials, design of interface engineering and investigate of microscopic mechanism in the field of PSCs.
空穴传输材料(HTMs)和阴极缓冲层(CBL)对钙钛矿太阳电池(PSCs)的性能有重要影响。本项目通过“点击”化学反应可控合成三氮唑/四氮唑核的不同拓扑结构化合物为HTMs,比较1,2,3-与1,2,4-三氮唑核、1,5-与2,5-二取代的四氮唑核的异构体、三氮唑与四氮唑核的结构相似材料之间HOMO与LUMO能级、UV-vis吸收、空穴迁移率和玻璃化转变温度等光学、电学和热学性能差别,分析PSCs光伏性能,明确取代基位置、N原子数对HTMs性能影响,建立相应输运理论;通过Michael加成法合成末端同时含羟乙基和巯基的类PEIE结构的超支化聚合物,作为CBL材料,预期不仅有类似PEIE降低电极功函的性质,而且因末端巯基的存在可生成Ag-S键而有活性层与电极间低接触阻抗、Ag膜的低逾渗阈值等特征。本项目研究将为钙钛矿太阳电池领域新材料开发、界面工程设计和微观机理研究等提供理论依据与技术支撑。
空穴传输材料(HTMs)和阴极缓冲层(CBL)等对钙钛矿太阳电池(PSCs)的性能有重要影响。为获得低成本、高效率且稳定性好的PSCs,本项目设计合成并应用了系列HTMs、CBL及电子传输层材料等,具体研究结果如下:.(1)新型HTMs方面:合成甲氧基三苯胺(TPA)取代锌酞菁化合物并作为无掺杂HTM应用于PSCs,获得16.23%的光电转换效率(PCE),拓展了酞菁类HTMs的分子结构与应用;研究了不同数量的TPA取代9-辛基咔唑衍生物、不同取代基位置萘核衍生物对能级和空穴迁移率的影响,后者获得18.7%的PCE,且电池重复性和稳定性好;研究了9,9’-芴位置的脂肪链修饰对分子能级、热稳定性、分子堆积和空穴迁移率等的影响;探索了三氮唑类HTMs的合成;上述研究可为HTMs的分子工程提供一定的参考。.(2)CBL方面:设计合成了超支化聚合物HypET24作为CBL,初步结果表明HypET24的界面修饰能明显提高相应PSCs的PCE。受限于本课题组反式结构器件的制备水平,目前器件的效率偏低,但该研究显示了HypET24的潜在应用前景。.(3)其它方面:研究了Y掺杂TiO2致密层、纳米棒阵列的晶体生长、光学、电学性质等,发现在前驱体溶液中Y/Ti摩尔比为3%的TiO2纳米棒阵列生长在Y/Ti摩尔比为5%的TiO2致密层上的PSC效率最高为18.32%;研究了水热法制备WO3纳米阵列的不同退火温度的影响;此外,还研究了Br-掺杂CH3NH3PbI3-xBrx薄膜的PSC,发现钙钛矿薄膜中Br含量的增长速率慢于前驱体溶液中Br含量的规律;上述研究是在本项目资金的支持下进行太阳电池致密层、骨架层和吸收层等的探索,为PSCs的研究提供了一定的数据与理论支持。.(4)发表SCI论文7篇、EI论文1篇,申请发明专利1项;培养硕士研究生4名;参加国内外学术交流5次。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
类钙钛矿型Cs2SnI6空穴传输材料的制备及其在钙钛矿太阳电池中的应用
基于碳纳米管空穴传输层和电极的反式钙钛矿太阳电池的研究
用于钙钛矿太阳能电池的新型空穴传输材料设计、制备及性能研究
基于二维类钙钛矿结构材料及高迁移率空穴传输材料的钙钛矿太阳能电池材料与器件研究