Hydrogenation of carbon dioxide is one of the major ways to reduce carbon dioxide for its further conversion and utilization. The primary goal of this project is to develop non-noble metal catalysts for low-cost and high efficiency production of methanol from carbon dioxide. We plan to study the mechanism insights of related catalytic reactions and design base metal complexes using modern computational quantum chemistry techniques. In order to reach higher efficiency and stability for catalytic hydrogenation of carbon dioxide using base metals, we would like to learn from hydrogenases, a type of metal enzyme that can catalyze the activation of hydrogen and reduction of proton efficiently with only base metal Fe and Ni in their active centers. We will study the catalytic hydrogen activation mechanism and the active site structure of mono-iron hydrogenase, and build Mn, Fe, Co and Ni complexes that possess the core function of mono-iron hydrogenase for the activations of H-H, C-H and C=O bonds. We plan to use the density functional theory (DFT) to calculate and analyze the electronic structures of the newly designed metal complexes, and predict their stability and catalytic activities. After the catalytic reaction pathway analysis, we should be able to propose a series of promising catalyst candidates for experimental synthesis and examination. We will collaborate with experimental chemists to synthesize those newly proposed metal complexes and examine their structural and catalytic properties. Then we will further optimize our design based on the feedback of experimental studies. In addition to our innovation in the design of base metal catalysts, our study will develop new concepts in catalysis, expend the ways for the activation and functionalization of inert chemical bonds, provide useful theoretical guidance in the development of new catalysts, and promote the theoretical catalysis research in solving real world problems.
本项目以实现高效廉价的二氧化碳加氢制甲醇反应为目标,使用现代电子结构理论和计算方法,研究过渡金属配合物催化二氧化碳等羰基化合物加氢反应的机理,计算设计非贵金属催化剂。为突破现有的催化剂在成本、环保和安全性上局限,我们将参考氢化酶活性中心的结构与反应机理,构建可实现其核心功能的新型锰、铁、钴、镍等非贵金属配合物,并使用密度泛函理论预测其化学稳定性和催化活性,提出具有较高潜力催化二氧化碳等羰基化合物加氢,并且容易在实验上合成的配合物结构。以此为基础,我们将与实验课题组开展合作,验证计算设计的配合物结构和催化特性,并根据实验结果的反馈进一步优化设计。本项目的研究工作不仅仅通过提出新的催化反应体系为实验研究提供明确的理论指导,同时也将发现新的反应途径,提出新的催化机制,丰富H-H、C-H、C=O等多种惰性化学键活化与重组的方式,形成系统的催化剂设计理念,促进理论催化研究在解决实际问题中的应用。
本项目以发展新型高效廉价的羰基化合物加氢,特别是二氧化碳加氢制甲醇反应催化剂为目标,在计算研究多种过渡金属配合物催化二氧化碳等羰基化合物加氢反应机理的基础上,计算设计了一系列有潜力高效催化相关反应的新型锰、铁、钴、镍等非贵金属配合物催化剂,并理论预测了其催化活性,分析了不同配体和官能团对催化效率的影响。通过对反应机理的探索和新型催化反应体系的理论预测,本项目的研究成果不仅仅为后续实验研究提供了明确的分子结构和反应机制参考,有助于提高相关催化剂开发的效率,同时也拓展了H-H、C-H、C=O、C-N、O=O等多种惰性化学键活化与重组的方式,促进了理论催化研究在解决实际问题中的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
低轨卫星通信信道分配策略
滚动直线导轨副静刚度试验装置设计
基于混合优化方法的大口径主镜设计
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
酮不对称加氢理论研究与非贵金属催化剂设计
烯烃与CO2羰基酯化反应的非贵金属催化剂及过程调控研究
羰基化合物均相不对称催化加氢反应的研究
重油中氮化合物的加氢反应行为及催化剂设计基础