As a source of information, the μ-LED array used for visible light communication has been a research spotlight. But there is few research on optical signal transmission under high power output and light detection for imaging sensing. This project is aimed at the abilities of electro-optical and optical-electro conversion for GaN-based multiple quantum wells on Silicon Substrate. Using a combination of theoretical simulation and experimental methods, the multi-functional μ-LED array integrated data transmission and imaging sensing is fully investigated. The research contents include: 1. High speed data transmission with high output power. Using back thinning technology, the lateral light transmission in membrane is suppressed that the crosstalk between μ-LEDs is reduced. A series and parallel hybrid circuits are designed to connect μ-LEDs with high bandwidth and high EQE for carrying out high output power and high bandwidth of the μ-LED array, simultaneously. 2. For imaging sensing. By using bandtail effect in quantum well, the mechanism of the μ-LED array under forward voltage capturing the limit cutoff wavelength of the optical signal is explored. Pixel blocks composed of series and parallel connected μ-LEDs can emit light signal and detect light for imaging at the same time, thus the integration of μ-LED array is improved. 3. Transfer to the foreign substrate. The substrate of μ-LED array can be removed and the array can be transferred to foreign substrate by using bonding and adhesives techniques, which are suitable for most commercial GaN-based MQWs on silicon substrate. The results of the project may improve the information device of IoT-based 5G communications.
μ-LED阵列作为信源一直是可见光通信研究热点,但在大功率光信号传输和光探测成像方向却少有问津。本项目利用Si衬底GaN基多量子阱材料具有电光、光电转换特性,采用理论模拟与实验相结合的方法,开展多功能μ-LED阵列研究。研究内容包括:1.用于大功率下高速通信。利用背后氮化物减薄技术抑制侧向光传输,减少μ-LED之间的串扰;利用单个μ-LED大带宽、高外量子效率等特点,设计串并联电路像素块,使阵列具有高输出光功率与大带宽。2.用于光探测成像。利用量子阱中的带尾效应,探索阵列在正向偏压下捕捉极限截止频率光信号的机理;利用串并联电路构成的像素块,实现在光信号发送的同时进行光探测成像,提高μ-LED阵列的功能集成性。3.转移至外部衬底。利用键合或粘合技术和商用Si衬底GaN基多量子阱体系材料,对μ-LED阵列实施衬底剥离和转移,拓展应用前景。该项目成果可助力于5G通信物联网信息器件的研发。
μ-LED阵列作为信源一直是可见光通信研究热点,但在大功率光信号传输和光探测成像方向却少有问津。本项目利用Si衬底GaN基多量子阱材料具有电光、光电转换特性,采用理论模拟与实验相结合的方法,开展多功能μ-LED阵列研究。研究内容包括:1.用于大功率下高速通信。利用背后氮化物减薄技术抑制侧向光传输,减少μ-LED之间的串扰;利用单个μ-LED大带宽、高外量子效率等特点,设计串并联电路像素块,使阵列具有高输出光功率与大带宽。2.用于光探测成像。利用量子阱中的带尾效应,探索阵列在正向偏压下捕捉极限截止频率光信号的机理;利用串并联电路构成的像素块,实现在光信号发送的同时进行光探测成像,提高μ-LED阵列的功能集成性。3.转移至外部衬底。利用键合或粘合技术和商用Si衬底GaN基多量子阱体系材料,对μ-LED阵列实施衬底剥离和转移,拓展应用前景。该项目成果可助力于5G通信物联网信息器件的研发。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于细粒度词表示的命名实体识别研究
基于混合优化方法的大口径主镜设计
三级硅基填料的构筑及其对牙科复合树脂性能的影响
粉末冶金铝合金烧结致密化过程
Si衬底半极性和非极性GaN基材料生长及LED研制
InGaN/GaN多量子阱绿光LED内量子效率及响应频率研究
表面微纳光栅对InGaN/GaN量子阱LED偏振特性和出光效率的影响研究
基于SiC衬底的GaN基功率LED光电热耦合与光子调控的研究