Micro-cutting and micro-grinding technologies have more advantages compared with other micro-manufacturing technologies for the production of geometrically complex 3D miniature components in a wide range of engineering materials. But now available micro-machine tools have problems such as low machining efficiency caused by low rotational speed of micro-spindles and low feed speed of micro-tables, and poor machining quality caused by large error motion of tools and poor rigidity of micro-machine tools, which seriously limit the application of micro-cutting and micro-grinding technologies. This project will study lubrication performance and dynamic characteristics of the ultra-high speed and ultra-high precision micro-gas bearing. It a will propose the design method of ultra-high speed and ultra-high precision micro-spindle and establish its design theory. It The high speed and precision micro-machine tool for micro-cutting and micro-grinding. It will solve the critical scientific problems including accuracy control technology of the ultra-precision micro-table using macro/micro feeding system at high feed speed, synthetic analysis method and theory of space error of the micro-machine tool. Based on above, the prototype ultra-high speed and precision micro-machine tool will be developed. The studies of micro-cutting and micro-grinding will be carried out with the prototype micro-machine tool so as to evaluate and verify its performance. Thereby the systematical study from bascic theory and key technologies of micro-maching equipment to processing technology will be realized. The research achievement provides the theory basis and lays the solid technological foundation for the research of the micro-machining equipment and micro-cutting and micro-grinding processes of our country. This project has strong theoretic significance and practical value.
微切削微磨削加工技术在复杂形状三维微小零件加工方面与其它微制造技术相比具有无可比拟的优势。而现有的微机床存在着由于微主轴转速低、微工作台进给速度低导致其加工效率低,由于微加工刀具跳动误差大、微机床刚性差导致其加工质量差等问题,严重制约了该技术的推广应用。本项目拟研究超高速超精密微气体轴承的润滑性能及动力学特性,提出新型超高速超精密微主轴设计方法、建立其设计理论,解决宏微结合驱动的超精密微工作台的高进给加减速度下的运动精度控制技术、微机床空间误差综合分析方法及理论等关键科学问题,研制出超高速精密微机床样机,开展微切削和微磨削试验研究,对样机的性能进行评估和验证,从而实现从微加工设备设计的基础理论、关键技术到微切削和微磨削工艺的深入系统研究。研究成果将为我国微制造装备及微切削和微磨削加工技术的研究提供理论依据并打下坚实的技术基础。本研究具有很强的理论意义和实用价值。
微切削磨削用微机床是微切削磨削加工的关键设备,是微切削磨削技术发展的重要基础。本课题围绕微切削磨削用微机床的设计制造,开展了一系列关键技术研究。具体内容分为以下五部分:高速精密微主轴的设计制造(包括气动涡轮轴的设计、微小型径向空气静压轴承的设计分析)、精密进给系统的设计(包括精密直线导轨单元与精密滚珠丝杆单元的设计与选型)、微机床零部件设计制造(包括关键基础件的动静态特性分析)、微机床电气及控制系统的设计(包括电气控制柜设计、伺服控制系统的设计与选型、数控系统的选型)、微机床整机装配技术研究和微切削磨削工艺试验。. 通过上述研究,课题组掌握了微切削磨削用微机床的设计与优化理论,研制出了微机床样机,并成功开展了微切削磨削试验。试验表明,微机床性能基本达到了预期效果,为后续的微切削磨削工艺研究奠定了基础,对我国微切削磨削用加工装备的发展提供了重要参考。
{{i.achievement_title}}
数据更新时间:2023-05-31
五轴联动机床几何误差一次装卡测量方法
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
电沉积增材制造微镍柱的工艺研究
单晶零件微尺度切削磨削工艺理论与关键技术研究
精密磨削微小毛刺形成及高速切削/磨削去毛刺机理研究
金刚石微粉砂轮超精密磨削
非球面微柱面透镜阵列模具的微磨料水射流辅助高效超精密磨削技术研究