With rising concerns about energy shortages, there are intense efforts worldwide to search renewable and green energy sources to replace conventional fossil fuels. Efficient electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are of paramount importance for electrochemical energy applications in fuel cells, metal-air batteries and electrocatalytic water splitting to generate hydrogen and oxygen. Although current precious metal Pt-based and ruthenium/iridium-based electrocatalysts have demonstrated superior electrocatalytic activities toward ORR (HER) and OER, respectively, they cannot meet the practical requirements of the aforementioned clean energy technologies ascribed to their non-bifunctional ORR/OER or OER/HER activity, high cost and source scarcity. The aim of this project is to tackle such an important issue by using biomass (e.g., shrimp shells, crab shells) derived N-doped carbon nanodots with small nanodot sizes (1-6 nm) and surface rich O- and N-containing functional groups as carbon and nitrogen sources to replace oil-derived chemicals for assembling and fabricating high performance and cheap graphitic carbon materials with defects as catalytic active sites and non-precious metal (e.g., Fe, Co) modified N-doped carbon materials with multifunctional electrocatalytic activities. The fabricated carbon-based electrocatalysts as electrode materials were systematically evaluated in some promising clean energy technologies such as fuel cells, rechargeable zinc-air batteries and electrocatalytic splitting water to generate hydrogen and oxygen. This project will use a combined approach of experiment and theoretical calculations to reveal the intrinsic relationships between electrocatalyst structure/component and their electrocatalytic performance. An applicative fabrication method of carbon-based electrocatalysts will be developed to realize controllable fabrication of electrocatalysts with targeted catalytic active species and multifunctional catalytic activities. The success of the proposed project will serve the needs of electrocatalysts with multifunctionality, high performance, plentiful and low cost properties for large-scale applications in fuel cells, rechargeable metal-air batteries and electrocatalytic splitting water to generate hydrogen and oxygen.
多功能(氧还原/氧发生/氢发生)电催化剂在燃料电池,金属-空气电池,分解水产氢、产氧等清洁能源技术中占据极其重要的地位。然而,当前广泛使用的铂基和钌/铱基催化剂尽管拥有优异的电催化性能,但其非催化多功能性,固有的昂贵性和稀有性极大地限制了相关能源技术的应用。本项目针对上述问题,拟采用廉价、资源丰富的生物质(如虾壳,蟹壳)水热衍生氮掺杂碳纳米点替代石油衍生化学试剂作为碳、氮源,利用其小尺寸(如1-6 nm)和表面含有丰富氧、氮官能基团的特性,组装和制备高性能、低成本、具有缺陷催化活性位碳材料和铁、钴修饰氮掺杂碳基多功能催化剂,并作为电极材料在相关能源器件中进行系统评价。拟采用实验结合理论计算的研究方法,揭示所制备碳基电催化剂结构、组成等与其催化活性的内在关联性;发展适用的制备方法,实现对催化剂催化活性组份、催化活性位及其催化活性的有效调控。本项目的成功实施将促进有关清洁能源技术的发展和应用。
发展高效、廉价非贵金属氧还原(ORR)、氢发生(HER)和氧发生(OER)电催化剂,对燃料电池,金属-空气电池,分解水产氢、产氧等清洁能源技术的发展至关重要。当前,尽管铂基和钌/铱基催化剂已经表明了优异的ORR、HER和OER催化活性,然而这些贵金属催化剂资源稀缺,价格昂贵,因此限制了有关清洁能源技术将来大规模生产应用。生物质是地球上最丰富的可再生资源之一,特别像虾/蟹壳、农作物秸秆类生物质是制备碳基催化剂的理想原料。本项目因此采用廉价、资源丰富的生物质(如虾壳,蟹壳)水热衍生氮掺杂碳纳米点替代石油衍生化学试剂作为碳、氮源,利用其小尺寸(如1-6 nm)和表面含有丰富氧、氮官能基团的特性,组装和制备高性能、低成本、具有缺陷催化活性位碳材料和铁、钴修饰氮掺杂碳基多功能催化剂,并作为电极材料在相关能源器件中进行系统评价。具体地,开展的研究内容包括:(1)发展高性能生物质碳基ORR电催化剂及其金属锌-空电池应用;(2)发展高性能生物质碳基HER和OER电催化剂及其电催化分解水应用;(3)生物质碳基材料及其电催化有机合成、电催化固氮合成氨及其电容去离子净水应用;(4)电催化反应器研发。进一步,本项目采用了实验结合理论计算的研究方法,揭示了所制备碳基电催化剂结构、组成等与其催化活性的内在关联性。至项目结题,依托本项目总计发表SCI论文33篇,其中,项目第一标注SCI论文17篇(基金号:51672277);项目第二标注SCI论文12篇(基金号:51672277);项目第三标注SCI论文4篇(基金号:51672277)。获得授权国家发明专利4项。依托本项目,部分研发的催化剂产品和电催化反应器系列产品已受到燃料电池公司和有关仪器设备公司的关注,并与课题组建立了长期研发合作关系,对推动有关领域的发展具有一定的推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
内点最大化与冗余点控制的小型无人机遥感图像配准
生物质衍生掺杂碳基催化剂的制备/改性及其机理研究
基于生物质碳源可控制备氮掺杂碳纳米材料及其电化学性能研究
介质阻挡放电制备AEMFC氮掺杂碳纳米笼氧还原催化剂及性能研究
电纺法制备碳纳米纤维的氮掺杂控制及其氧还原催化活性研究