真正多维时空高精度黎曼解法器及其应用

基本信息
批准号:11371063
项目类别:面上项目
资助金额:50.00
负责人:李杰权
学科分类:
依托单位:北京师范大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:齐进,赵励耘,钱建祯,汪玥,宋艳萍,陈锐,李丽娜,杜亨荣,杜知方
关键词:
可压缩流体时空高精度有限体积格式黎曼解法器真正多维性
结项摘要

The finite volume scheme and discontinuous finite element method play dominant roles in the scientific computation of compressible fluid flows and related problems. In this context, one of key ingredients is the construction of numerical fluxes, which is quite well understood in one space dimension. However, related constructions have to be often simplified to one dimensional cases due to notoriously complex wave interactions around cell vertices when space dimensions are multiple. On the other hand, very high order accuracy both in space and time is required to deal with many practical problems. This project aims to investigate the construction of genuinely dimensional Riemann solvers of high order accuracy both in space and time, based on the underlying theoretical results that the principal applicant obtained together with his collaborators in past years. The research will start from the multidimensional linear systems of constant coefficients, to compressible Euler equations, to magneto-hydrodynamical systems, to shallow water equations on sphere (earth) and to gas dynamical combustion. It is expected that such a contribution will cure some numerical instabilities such as carbuncle phenomenon in the simulation of strong shock propagation and provide further numerical tools for CFD and related engineering problems.

在可压缩流体及相关问题的科学计算中,有限体积格式(FV)和间断有限元(DG)方法等占有重要地位。其中,数值流通量的构造是至关重要的,它可归结为相关联广义黎曼问题的数值求解。一个空间维数的情形下相关研究比较成熟,而在多个空间维数的情形下,由于网格顶点附近非线性波的复杂相互作用,人们常使用局部一维化的方法计算数值流通量,由此可能导致数值不稳定性或虚假物理特征;另一方面,许多实际问题常需要时空高阶精度的算法。本项目将结合申请者多年来对非线性多维守恒律系统的理论成果,探索时空高精度、真正多维黎曼解法器。研究路线拟从多维常系数线性方程组入手,然后到可压缩欧拉方程,再到更一般的磁流体力学方程组、球面上浅水波方程组及其气体动力燃烧等;主要特色和关键是黎曼解法器真正多维性和时空高精度。期望研究结果能克服诸如强激波模拟中红宝石现象等多维数值不稳定性,为计算流体力学及相关领域的工程问题提供理论支撑。

项目摘要

本项目以流体力学中的可压缩欧拉方程组为背景,发展时空耦合、真正多维的高精度广义黎曼解法器。以此项目为依托,取得了一系列研究成果,特别两步四阶时空耦合的高精度数值方法产生了重要影响,该方法结合广义黎曼解法器和多步Rung-Kutta型方法的优点,规避了它们的劣势。 目前在国际一流刊物上发表论文1 0多篇,其中SIAM J Sci. Comput.1篇, SIAM J. Numer. Anal. 1篇,Journal of Comput. Phys. 5篇,Physics of Fluids 1篇, 其它刊物多篇,另有投稿论文多篇。目前这一领域的研究正在进一步拓展之中,可望在多介质、颗粒流等多方面做出贡献。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

路基土水分传感器室内标定方法与影响因素分析

路基土水分传感器室内标定方法与影响因素分析

DOI:10.14188/j.1671-8844.2019-03-007
发表时间:2019
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
5

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015

李杰权的其他基金

批准号:10971142
批准年份:2009
资助金额:25.00
项目类别:面上项目
批准号:10301022
批准年份:2003
资助金额:7.00
项目类别:青年科学基金项目
批准号:11771054
批准年份:2017
资助金额:48.00
项目类别:面上项目

相似国自然基金

1

多介质大变形流体的真正多维高保真算法

批准号:91130021
批准年份:2011
负责人:王双虎
学科分类:A0504
资助金额:75.00
项目类别:重大研究计划
2

多体真正纠缠态的产生及其应用

批准号:10774088
批准年份:2007
负责人:夏云杰
学科分类:A2205
资助金额:27.00
项目类别:面上项目
3

多维动态时空耦合映象分析及其应用研究

批准号:60571066
批准年份:2005
负责人:沈民奋
学科分类:F0124
资助金额:21.00
项目类别:面上项目
4

可压缩多介质流体的真正多维高保真算法

批准号:91530108
批准年份:2015
负责人:王双虎
学科分类:A0504
资助金额:25.00
项目类别:重大研究计划