基于SVM卷积神经网络的火灾导线熔痕分类识别技术研究

基本信息
批准号:51801036
项目类别:青年科学基金项目
资助金额:24.00
负责人:杨文兵
学科分类:
依托单位:广州大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:莫善军,温丽维,廖云丹,屈悦,彭惠旺
关键词:
电气火灾调查深度学习SVM支持向量机金属物理导线熔痕
结项摘要

At present, most of the electrical fire identification in China is based on experience or semi-empirical. The existing theories and methods can not meet the needs of electrical fire identification.. In this project, based on the analysis of the existing method for cable melted marks identification, the deep learning method based on SVM convolutional neural network is used to construct a system for cable melted marks classification and identifying. This project analyzes in detail the appearance maps, metallographic maps, and the feature composition information in the surface layer of EDS scan maps for cable melted marks, which classifies the above three types of images and calculates the weights of the parameters, and the porosity rate which is obtained in advance and the internal EDS component data are added to the network parameter operation. By using these methods, the reliability of image feature extraction is improved, and a comprehensive criterion is finally formed, so as to achieve the purpose of accurately classifying the sample and identifying the properties of the cable melted marks.

当前我国电气火灾物证鉴定仍多以经验或半经验为主,现有理论和方法已无法很好适应电气火灾物证鉴定需求。. 本项目在分析现有导线熔痕鉴定方法的基础上,利用基于SVM支持向量机卷积神经网络的深度学习处理方法,构建火灾导线熔痕分类识别鉴定系统,深入挖掘导线熔痕的外观形貌图、金相图、表层成分EDS面扫图中的特征信息,并把上述三类图像识别分类和进行参数的权重计算,以及把先期获取的孔洞率和内部EDS成分数据加入网络参数运算,提高图像特征提取的可靠度,最终形成综合判据,从而达到样品准确分类和鉴定熔痕属性的目的。

项目摘要

当前我国电气火灾物证鉴定仍多以经验或半经验为主,现有理论和方法已无法很好适应电气火灾物证鉴定需求。.本项目在分析现有导线熔痕鉴定方法的基础上,利用基于SVM支持向量机卷积神经网络的深度学习处理方法,构建火灾导线熔痕分类识别鉴定系统,提高图像特征提取的可靠度,最终形成综合判据,从而达到样品准确分类和鉴定熔痕属性的目的。. 本项目的主要研究进展如下:. (1)制作了电气火灾导线熔痕的标签数据集;. (2)构建了对电气火灾导线熔痕高效识别分类的SVM-CNN网络系统,并使用Torch机器学习框架和Python语言实现;. (3)开发了一种“SVM特征融合算法”进行特征提取分类,准确率能够在DenseNet121网络预测的基础上再提高3%,并且提高了召回率和f1_score值。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

现代优化理论与应用

现代优化理论与应用

DOI:10.1360/SSM-2020-0035
发表时间:2020
2

四川盆地东部垫江盐盆三叠系海相钾盐成钾有利区圈定:地球物理和地球化学方法综合应用

四川盆地东部垫江盐盆三叠系海相钾盐成钾有利区圈定:地球物理和地球化学方法综合应用

DOI:10.19762/j.cnki.dizhixuebao.2021191
发表时间:2021
3

基于颗粒阻尼的变频空调压缩机管路减振设计

基于颗粒阻尼的变频空调压缩机管路减振设计

DOI:10.3969/j.issn.1004-132x.2022.18.003
发表时间:2022
4

SUMO特异性蛋白酶3通过调控巨噬细胞极化促进磷酸钙诱导的小鼠腹主动脉瘤形成

SUMO特异性蛋白酶3通过调控巨噬细胞极化促进磷酸钙诱导的小鼠腹主动脉瘤形成

DOI:10.3969/j.issn.1000-4718.2020.05.001
发表时间:2020
5

重金属-柠檬酸-针铁矿三元体系的表面络合模型研究

重金属-柠檬酸-针铁矿三元体系的表面络合模型研究

DOI:10.7524/j.issn.0254-6108.2020053102
发表时间:2021

杨文兵的其他基金

相似国自然基金

1

基于卷积神经网络的云南野生鸟类图像细粒度分类与识别研究

批准号:61662072
批准年份:2016
负责人:赵毅力
学科分类:F0605
资助金额:36.00
项目类别:地区科学基金项目
2

基于卷积神经网络的早期胃癌识别与检测研究

批准号:31771072
批准年份:2017
负责人:刘济全
学科分类:C1005
资助金额:62.00
项目类别:面上项目
3

基于卷积神经网络和双层优化建模的复杂图像分类研究

批准号:61702163
批准年份:2017
负责人:谢国森
学科分类:F0605
资助金额:27.00
项目类别:青年科学基金项目
4

基于深度卷积神经网络构建场景部件的场景图像分类研究

批准号:61602027
批准年份:2016
负责人:白双
学科分类:F0605
资助金额:20.00
项目类别:青年科学基金项目