3~5μm mid-infrared lasers have extensive application prospects in the domains of national defense security, space communication, environmental pollution monitoring, and basic scientific research. The gain fibers for developing 3~5μm fiber lasers are mainly rare-earth doped ZrF4-based (ZBLAN for short) glass fibers at present. Watt-level 3~3.5μm lasers could be obtained by using rare-earth doped ZBLAN fibers, however the high phonon energy of ZBLAN glass limits the development of 3.9μm fiber laser with high performance. Compared to ZBLAN glass, InF3-based glass has lower phonon energy and is potential glass material for the development of 3.9μm fiber laser, however there is no report of watt-level 3.9μm fiber laser based on InF3-based glass fibers until now. In this project, we are planning to fabricate Ho3+-doped InF3-based glass fibers with loss less than 0.1dB/m based on our preliminary work, by investigating the effects of material purity, fabricating technology on fiber loss, the effects of glass composition, Ho3+ concentration on 3.9μm emission properties. And we are planning to explore the application of Ho3+-doped InF3-based glass fibers in the development of 3.9μm mid-infrared fiber laser.
3~5μm波段中红外激光在国防安全、空间通信、环境污染监测、基础科学研究等领域具有广泛的应用前景。目前研制3~5μm波段光纤激光器所用的增益介质主要为稀土掺杂ZrF4基(ZBLAN)玻璃光纤。利用稀土掺杂ZBLAN光纤可以实现瓦级的3~3.5μm激光,但是ZBLAN玻璃较高的声子能量限制了利用其研制高性能的3.9μm光纤激光器。与ZBLAN玻璃相比,InF3基玻璃具有更低的声子能量,是潜在的可用于研制3.9μm光纤激光器的玻璃材料,但目前还未见相关瓦级的3.9μm光纤激光研究报道。本项目拟在申请者前期工作的基础上,通过研究玻璃组分、Ho3+离子掺杂浓度对3.9μm发光性质的影响,研究原材料纯度及光纤制备工艺对光纤损耗的影响,制备出损耗小于0.1dB/m的Ho3+掺杂InF3基玻璃光纤,并探索其在3.9μm中红外光纤激光器研制方面的应用。
3~5 μm波段中红外激光光源在环境监测、基础科学研究、空间通信、生物医疗和国防等诸多领域有着特点鲜明和广泛的应用需求。本项目研究了InF3基玻璃的组成与结构基团、热学和光学特性的关系、Ho3+离子掺杂InF3基玻璃的3.9 μm发光特性以及激光性能参数、光纤拉制工艺参数对光纤性能的影响;建立了3.9 μm光纤激光器的数值模型。.研究发现与Ho3+单掺杂氟铟基玻璃相比,Ho3+/Tb3+、Ho3+/Eu3+共掺杂氟铟基玻璃的3.9 μm发光强度分别提高30%和100%,其发光增强机制为Tb3+离子、Eu3+离子与Ho3+离子之间的能量传递和交叉弛豫过程可以减小Ho3+离子3.9 μm跃迁下能级的寿命。.建立了双波长激光泵浦Ho3+掺杂3.9 μm光纤激光器数值模型,通过数值计算发现,与传统单波长888 nm激光泵浦相比,采用888 nm和1680 nm双波长激光泵浦可以有效增强3.9 μm激光粒子数反转,降低提高3.9 μm激光阈值。.研制出全固态双包层氟化物玻璃光纤,与外包层为聚合物的商用氟化物光纤相比,全固态双包层氟化物玻璃光纤的内外包层热性质更加匹配,光纤具有更高的热稳定性以及更高的激光热损伤阈值。该技术填补了国内在全固态氟化物光纤制备领域的技术空白,推动了我国氟化物光纤制备技术的发展。.利用888 nm激光器作为泵浦源,自研掺Ho3+氟化铟基玻璃光纤作为增益介质,实现了中心波长3919 nm、最大输出功率54 mW的3.9 μm光纤激光输出,对应的斜率效率为6%。填补了我国中红外光纤激光领域的空白,为研制高功率3.9 μm光纤激光器奠定了坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Enhanced piezoelectric properties of Mn-modified Bi5Ti3FeO15 for high-temperature applications
基于腔内级联变频的0.63μm波段多波长激光器
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
BiVO4/Fe3O4@polydopamine superparticles for tumor multimodal imaging and synergistic therapy
制冷与空调用纳米流体研究进展
中红外光纤激光器用硫系掺杂光纤制备及性能研究
用于中红外超连续光源的氟化铝基玻璃微结构光纤研究
基于稀土离子共掺杂铋酸盐玻璃微纳光纤的中红外微腔激光器研究
用于中红外光纤激光输出的低损耗高增益荧光纳米晶掺杂玻璃