The nanoparticles and nanofibers coated by PNIPAM to form core/shell structure can switch hydrophilicity to hydrophobicity on surface caused by the rise of temperature. The core-shell nanoparticles and nanofibers have been successfully applied in Pickering emulsions and oil/water separation, respectively. Up to now, the core-shell nanoparticles and nanofibers are usually prepared via controllable living free radical polymerization such as ATRP, RAFT and SET-LRP which are not suitable for production in large scale. Meanwhile, cellulose has not been used for develop core-shell nanomaterials prepared via electrospinning, yet. NaOH/urea aqueous solution at -12℃ has been regarded as efficient green solvent of cellulose. Aimed at preparing core-shell nanoparticles and nanofibers which both are composed of cellulose coated by PNIPAM via electrospinning, this proposal based on the cellulose dissolution in NaOH and urea aqueous solution at -12℃, will firstly apply coaxial electrospinning to prepare core-shell nanoparticles, and apply coaxial and conventional electrospinning in cellulose/PNIPAM mixed solution to prepare core-shell nanofibers, responsively. The resultant core-shell nanoparticles and nanofibers will be used as thermo-responsive Pickering emulsifiers and oil/water separation materials, respectively. Moreover, quantum dots will be strategically introduced into the shell of Pickering emulsifiers and functional mechanism of thermo-responsive Pickering emulsifiers can be explained by the optical properties of quantum dots influenced by temperature variations in association with the motion process of quantum dots in the emulsion.
以PNIPAM为壳层材料的核-壳型纳米球与核-壳型纳米纤维具备通过改变温度切换材料表面亲/疏水性的功能,分别在Pickering乳液和油水分离中发挥了重要作用。目前,制备以PNIPAM为壳层的核-壳型纳米材料主要通过ATRP、RAFT、SET-LRP等可控活性自由基聚合,难度大且不利于大规模生产。低温NaOH/尿素水溶液被认为是绿色高效的纤维素溶剂,然而尚未作为静电纺丝体系制备核-壳型纤维素纳米材料。本项目将基于-12℃纤维素/NaOH/尿素水溶液体系,拟通过静电纺丝分别制备以PNIPAM为壳层、纤维素为核层的核-壳型纳米球和核-壳型纳米纤维。首先,通过同轴电纺制备核-壳型纳米球;其次,通过同轴电纺和混合溶液电纺分别制备核-壳型纳米纤维;所制备的材料将分别作为温敏型Pickering乳化剂和油水分离材料。此外,通过同轴电纺将量子点固定在温敏型Pickering乳化剂中以研究其乳化机理。
将聚N-异丙基丙烯酰胺(PNIPAM)作为壳层材料的核-壳型纳米微球作为Pickering乳化剂,能够通过控制温度切换乳液乳化/破乳,从而实现工业生产的连续性。通过传统化学方法制备核-壳型微球不仅实验条件要求苛刻,并且所制备的微球材料多为凝胶状,不便于运输及使用。同轴静电喷雾技术能够一步制备具有核-壳型精细结构的固态纳米球。本项目系统开展了四个方面的研究:(1)同轴静电喷雾制备核-壳型纳米球;(2)核-壳型纳米球作为Pickering乳化剂;(3)温敏型碳点的制备及其作为Pickering乳化剂;(4)生物碳/纳米纤维气凝胶复合材料的制备及其油/水分离。研究结果表明以醋酸纤维素和PNIPAM分别作为核层和壳层聚合物,采用同轴静电喷雾成功制备了单分散的核-壳型纳米球,其表面呈现明显的温敏性;将核-壳型纳米球作为Pickering乳化剂,在25 ℃时能够分别乳化正庚烷/水和甲苯/水体系,形成稳定的水包油型乳液,并且通过升高温度(35~45 ℃)能够实现完全破乳。核-壳型纳米球乳化正庚烷/水的最低浓度为3.5 mg/mL,其液滴表面的纳米球覆盖率较低,随着纳米球浓度增加,液滴平均直径不断减小;当纳米球浓度达到15.3 mg/mL时,液滴发生团簇;随着纳米球浓度进一步增大,液滴表面的纳米球由单层包覆变成多层包覆,使得乳液更加稳定。以葡萄糖/咪唑型离子液体为原料成功制备了水溶性的荧光碳点,在25 ℃时此碳点能够乳化水/正己烷体系;通过碳点表面接枝PNIPAM成功制备了温敏型碳点,作为Pickering乳化剂能够通过控制温度实现水/甲苯体系的乳化和破乳。以柚子皮为原料制备了多孔生物碳,并与电纺PVDF、SiO2纳米纤维相结合制备了纳米纤维气凝胶复合材料,此复合材料具有较大的比表面积和较强的吸油能力和乳液分离效率,对三氯甲烷的最大吸附量达到85.31 g/g,对甲苯/水乳液的分离效率超过99 %。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
基于Pickering 乳液的分子印迹技术
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
三级硅基填料的构筑及其对牙科复合树脂性能的影响
纳米石膏颗粒晶格转化高效分离油包水乳液
乳液/悬浮电纺制备微纳米结构及控制
基于辉光放电电解等离子体对双波长响应荧光温敏水凝胶的可控合成及荧光温敏特性与影响机制研究
磁性温敏/电敏智能纳米水凝胶作正渗透汲取剂的行为表现及其机理