High temperature (> 200 °C) multiple-shape memory polymer (MSMP) is one of the urgently needed smart materials for the cutting-edge fields, such as aerospace, oil borehole (sub-surface), etc. Block copolymers consisting of aliphatic polymer chains are often used for thermally responsive MSMPs, but their poor thermal and mechanical properties (strength and modulus) are problematic. In the case of all-aromatic block copolymers, the preparation is challenging and the synthesis mechanism is not clear yet. Meanwhile, lacking of permanent scaffold makes the thermoplastic all-aromatic block copolymers difficult to behave multiple-shape memory. High temperature thermoplastic poly(esterimide)s block copolymers (TP) exhibiting two glass transitions have been successfully synthesized via simple one-step melt condensation chemistry in our previous research. Now we propose to introduce permanent scaffold into the system through terminating the poly(esterimide)s TP using various phenylethynyl-based end-cappers. A series of novel high temperature poly(esterimide)s thermosetting block copolymers (TSB) will be prepared in this research, and the synthesis mechanism will be studied as well. In order to build a quantitative analytical model for the MSMP with two reversible phases and permanent scaffold, the effect of cross-linked network structures on the viscoelasticity and multiple-shape memory behavior of TSB thermosets will be investigated. The relationship between structure and property for the TSB thermosets will be established and high temperature (> 200 °C) MSMPs with controllable multiple-shape memory can be obtained.
耐高温(>200°C)多重形状记忆高分子材料(MSMP)是航天航空、油田钻井等尖端领域急需的智能材料。嵌段共聚物是常见的热响应型MSMP,但是存在耐热性差、强度和模量低等瓶颈问题。究其原因是现有嵌段共聚物为脂肪族链段,而全芳香族刚性嵌段共聚物的制备技术难度高,合成机理不明,并且因缺少永久性固定相而难以实现多重形状记忆功能。申请人在成功采用一步熔融缩聚法合成具有双重玻璃化转变的热塑性嵌段共聚物的基础上,提出通过耐高温芳炔类活性端基封端,构筑永久性固定相的新思路。本项目从新型热固性耐高温聚酯酰亚胺嵌段共聚物(TSB)的设计与合成出发,探明一步熔融缩聚法合成TSB的机理;深入研究不同交联结构的TSB的粘弹行为及多重形状记忆效应,建立适用于兼具双重可逆相和永久性固定相的MSMP的粘弹特性与形状记忆行为的定量模型,构筑TSB的结构-性能关系,获得多重形状记忆效应可控的耐高温MSMP。
全芳香族主链热致性液晶聚合物(TLCPs)具有优异的热稳定性、高机械性能和出色的耐化学性,在高性能形状记忆聚合物(SMP)领域显示出巨大的应用前景。但是现有TLCPs在性能和制备方法方面都存在瓶颈问题,分别表现为加工性差,在普通溶剂中不能溶解,熔点(Tm)接近分解温度,玻璃化转变温度(Tg)低等。因此,如何利用简单、可控的聚合方法制备具有良好加工性、高耐热性和多重形状记忆效应的TLCPs是一项具有重要研究意义和实际应用价值的课题。本文即围绕这个课题展开以下两方面研究。.首先,采用中低温(120℃)溶液聚合法,以活性端基(3-EA)封端由曲棍形结构的酰亚胺AB型间位芳香族单体(IM)、羟基苯甲酸(HBA)和6-羟基-2-萘甲酸(HNA)组成的分子主链,以直接酯化反应的方式合成了两种活性热固性全芳香族液晶聚酯酰亚胺(LCPEI-1和LCPEI-2)。在此基础上,对比研究了不带活性端基的两种全芳香族液晶聚酯酰亚胺(LCPEI-1-c和LCPEI-2-c)的结构与性能。研究结果表明,LCPEI-1和LCPEI-2不仅具有低Tm、低复合熔融粘度(|η*|)和良好的溶解性,而且其固化物具有高Tg和高储能模量(E')。这些研究结果说明非线性芳香族单体和活性端基联用的方法有利于获得兼具良好加工性和高耐热性的热固性LCPEIs,并且其聚合温度仅需120℃,克服了传统熔融和溶液聚合法需要在高温(310℃)下进行的瓶颈问题。.其次,为了扩大兼具良好加工性和耐热性的LCPEIs的应用范围和解决目前三重形状记忆性能聚合物(TSMP)Tg低的问题。我们将LCPEI-1和环氧树脂(EP)共混,制备了具有高Tg和三重形状记忆性能的热固性树脂(EPEAEI),系统研究了EPEAEI的固化反应、热机械性能、耐热性和形状记忆性能。研究表明,EPEAEI具有双Tg(93℃和218℃),从而具备三重形状记忆性能,并在编程温度(Tprog)分别为173℃和248℃时都获得100%的形状回复率。与此同时,与LCEPI-1相比,EPEAEI具有较低的固化反应温度,相似的热机械性能;与EP相比,EPEAEI具有更优异的耐热性能。.总之本课题开发兼具多重形状记忆效应并在高温下仍保持高强高模的SMP有着重要的科学意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
聚酰胺酸盐薄膜的亚胺化历程研究
简化的滤波器查找表与神经网络联合预失真方法
外生环境因素对浙江省耕地利用效率的影响
植物中蛋白质S-酰化修饰的研究进展
含酰亚胺结构耐高温聚酯弹性体的制备及性能
热固性异酰亚胺树脂及复合材料的研究
树型聚酯/聚缩水甘油醚嵌段共聚物多功能靶向纳米材料
基于生物基PEF聚酯的高韧性高阻隔性多嵌段共聚物