Stretchable electronics is an emergent class of electronics made on soft substrates that retains electric integrity under large mechanical deformation, such as stretching, bending and compression. Due to meeting the potential demand of the next generation electronic devices in the transplantable,potable,comfortable,and excellent conformability to no-planar operation interface, stretchable electronics attracts great attention both in academia and industry in rencent years. To aim at the current challenges of stretchable electronics, such as limited DOF (degree of freedom) and relatively small amplitude in stretchability, interfacial delamination, and unstable electric functionality under mechanical deformation, study on inorganic stretchable interconnects design and its comprehensive evaluation of electromechanical properties is proposed in this project, including characterization of interfacial mechanical behavior, design of conductor layouts, mechanical properties, electric properties of inorganic stretchable interconnects and inherent relationships among them. Firstly, the mechanical characterization of metal-rubber interface is determined through experiments analysis and the theory of solid mechanics. Then the theoretical and numerical models of the interfacial properties of metal-rubber structure are built. The concept of fractal geometry will be introduced in geometry design and layout for self-similar stretchable interconnects. By means of experiments and simulation, the stretchable performances including DOF, type, and amplitude of the interconnect deformation will be analyzed, and the inherent relationships between the features of metal layouts and the stretchability is explored. Further, the model of the electrical resistance in function of strain is developed. Coupled with the load of stress and strain generated from above interfacial mechanical model, the electric properties of stretchable interconnects are predicted. Finally, based on the comprehensive evaluation of above mechanical and electric characterization, systematic design procedures for multi DOF inorganic stretchable interconnects can be concluded.
可延展柔性电子在穿戴电子、柔性显示、生物医疗等领域具有广阔的应用前景。针对当前可延展柔性无机电子面临的延展自由度与幅度有限、界面分层、电学特性下降甚至失效等问题,开展可延展柔性无机电子互连结构设计及其机-电综合特性的研究,系统探讨可延展柔性无机电子的界面力学表征、力学特性、结构设计、电学特性及其内在关联关系等基础问题。首先,研究异质界面力学特性表征与分析,建立界面力学分析模型;其次,引入分形几何学概念,开展可延展互连"自相似"结构设计,运用界面力学模型,研究"自相似"可延展互连结构的力学特性,探讨可延展互连结构与延展性能(延展的自由度、类型、幅度等)之间的内在关系;研究应力应变状态与电学特性之间的内在关系,建立应力应变-电学分析模型,运用前述分析的应力应变状态进而耦合分析可延展互连结构的电学特性;最后,基于上述机-电综合特性分析评价形成多自由度可延展柔性无机电子的互连结构设计学理论基础。
可延展柔性电子在穿戴电子、柔性显示、生物医疗等领域具有广阔的应用前景。本项目针对当前可延展柔性无机电子面临的延展自由度与幅度有限、界面分层、电学特性下降甚至失效等问题,开展可延展柔性无机电子互连结构设计及其机-电综合特性的研究,系统探讨可延展柔性无机电子的界面力学表征、力学特性、结构设计、电学特性及其内在关联关系等基础问题。首先,研究异质界面力学特性表征与分析,建立界面力学分析模型;其次,引入分形几何学概念,开展可延展互连“自相似”结构设计,运用界面力学模型,研究“自相似”可延展互连结构的力学特性,探讨可延展互连结构与延展性能(延展的自由度、类型、幅度等)之间的内在关系;研究可延展柔性无机电子互连结构的电磁特性,建立电磁分析模型,运用前述分析的应力应变状态进而耦合分析可延展互连结构的电学特性;最后,基于上述电学综合特性分析评价形成多自由度可延展柔性无机电子的互连结构设计学理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
基于图卷积网络的归纳式微博谣言检测新方法
三级硅基填料的构筑及其对牙科复合树脂性能的影响
极地微藻对极端环境的适应机制研究进展
2A66铝锂合金板材各向异性研究
基于无机/有机复合设计的多层可延展结构与柔性电子器件研究
可延展柔性电子器件结构失效研究
PZT等柔性氧化物铁电薄膜及其全无机柔性电子器件的研究
可控大变形高性能柔性可延展电子器件结构设计力学