Facing the most severe fog-haze weather to date, it becomes a currently emerging area for the development of new porous nanomaterials possessing fog-haze related gases (such as SO2、CO2 and Volatile Organic Compounds (VOCs)) detection and adsorption properties. Based on molecular design and the principle of crystal engineering, this project is planning to build novel porous Metal-Organic Frameworks (MOFs) nanomaterials based on nitrogen-riched cage/channel SBUs (Secondary Building Units) bearing uncoordinated nitrogen atoms and exceptional function for chemical sensing or gas adsorption. Using a series of nitrogen-riched multi-dental ligands and skeleton ligands, coordinating with transition metals or metal-based clusters, these nanoMOFs can be synthesized by controlled self-assembling under solvent evaporation, hydrothermal, solvothermal, ionothermal, ultrasonic or microwave condition, assisted with "Bottom-Up" strategy. The porous nanoMOFs are directed to detect and adsorp fog-haze related gases, and the channel can be further modified and functionalized in situ to better these detection and adsorption properties. With this project for synthesizing porous nanoMOFs with nitrogen-riched cage/channel and investigating their detection and adsorption properties for fog-haze related gases, the relationship between these properties with framework structure, pore shape and size, or sensitive core can be revealed. Many state-of-the-art characterizing and analyzing methods will be utilized. The synthesis law, structure characteristic and the structure-property relationship of such kind of MOFs nanomaterials can be derived, leading to develop valuable porous MOFs nanomaterials for practical application in fog-haze detection and improvement, which will have great significance for chemistry, environment, material and their cross and integration.
面对史上最严重的雾霾天气,探索应用于雾霾相关气体(如SO2、CO2、挥发性有机化合物VOCs等)的检测及吸附的多孔纳米材料成为化学与材料领域的研究热点之一。本项目基于分子设计思想和晶体工程原理,拟采用一系列含多氮的多齿配体和骨架配体,与各种金属离子及金属簇进行配位可控自组装,通过溶剂挥发、水热、溶剂热、离子热或微(超声)波等方法,辅助以“自下而上”的合成策略,构筑具有“未配位氮原子”的“富氮笼(壁)”基及优良化学传感或吸附功能的新型多孔MOFs纳米材料。并以检测和吸附雾霾相关气体功能为导向,对纳米材料的孔道进行进一步的原位修饰和功能化。研究该类纳米材料对雾霾相关气体的检测及吸附性能,揭示其性能与骨架结构、孔洞大小和形状、敏感中心及吸附类型等的内在联系。总结该类材料的合成规律、结构特点以及结构-性能关系,为开发具有雾霾检测和治理实际应用价值的多孔MOFs纳米材料提供有益的探索。
检测和吸附雾霾相关的CO2气体及挥发性有机污染物,在未来能源和环境可持续发展领域是一个亟待解决的问题。本项目通过水热和溶剂热合成方法,合成了一系列可以用于气体吸附和化学传感的具有富氮活性位点的新型多孔金属-有机框架纳米材料。对该类材料做了元素分析,红外,热重-差热分析,X-射线单晶结构分析等基本表征。同时研究了该类材料选择性吸附CO2气体,选择性检测硝基爆炸物和重金属离子,荧光和磁学等性能。另外,揭示了其性能与骨架结构、孔洞大小和形状、敏感活性位点等的内在联系。总结了该类材料的合成规律、结构特点以及结构-性能关系。相关研究结果已在Chem. Commun., Inorg. Chem., Dalton Trans., RSC Adv., Mater. Lett.等国际期刊上发表SCI论文20篇。项目成果为新型多孔MOFs材料的构筑提供了科学依据,基本实现了项目预期研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
富氮配体基PMOFs材料的设计合成及其对溶液中离子“裸眼”检测性能的研究
新型富氮类多孔复合材料的设计制备与气体吸附研究
富氮多孔金属有机骨架材料的气体吸附分离性能研究
多孔功能MOFs材料的设计合成与氢气、二氧化碳气体吸附性能研究