The sensors are the "facial features" of human beenings to know about and change the natural world, which have been considered as one of the key technologies for the modernization. However, with the continuously enhanced service requirements, the sensors with high sensitivity, high stability, and capable to be well worked under the harsh environments, are highly desired. These become the grand chanllege for the exploration of the next-generation sensors. In the present work, we intend to make full use the unique advantage of SiC materials with the insitrinc high temperature stability and the perfect single-crystalline crystal structures of low-dimensional nanomaterials, for the exploration of novel and efficient high-temperature photoconductive pressure sensors. We will firstly realize the precise control on the growth and doping of single-crystalline 6H-SiC nanowires via pyrolysis of polymeric precursors. Then, the research will be carried out to investigate the effects of sizes and doping of the SiC nanowires on their photoconductive piezoresistance behaviors, which leads to disclosing the relationship among the structures, doping and ligh-assisted piezoresistance properties of the single-crystal SiC in nanoscale. Subsequently, we will systematically study the influences of the size effect, surface effect and energy band regulation of SiC nanowires on their photoconductive piezoresistance properties under room- and high-temperatures, and clarify the transportation behaviors of the carriers and piezoresistance effect mechanisms of the pressure sensors based on SiC nanowires. It is promising that the optimized coupling between the light excitation and piezoresistance effect could bring a significantly improved sensitivities of the given pressure sensors, which have the profound scientific significance for the exploration of the high-temperature pressure sensors with high sensitivities and robust stabilities.
传感器是人类认识和改造世界的“五官”,是衡量现代化进程的关键技术之一。随着服役需求的不断提高,对高灵敏度、高稳定、以及能够胜任苛刻工作环境的传感器需求日益迫切,成为当前传感器研发的主要困难和挑战。本项目拟充分利用SiC材料体系独特的高温稳定性和完美的单晶低维纳米结构,以高灵敏高稳定高温光导压力传感器研发为导向,以有机前驱体热解为材料制备手段,实现SiC单晶纳米线生长与掺杂的精细控制,进而系统研究其结构-掺杂-光导压阻特性间的相互关系并进行优化,实现光导激发和压阻效应的最佳匹配,大幅度提高其灵敏度。相关工作将系统评价尺寸效应、表面效应和能带调控对SiC纳米线光导压阻特性的影响,阐明其载流子输运特性及其光导压阻机理,通过紫外光激发和压阻效应的有机耦合,有望实现高灵敏高稳定的SiC高温光导压力传感器的研发,具有显著的科学意义和潜在的应用价值。
本项目围绕高灵敏高稳定高温光导压力传感器研发开展研究工作,以有机前驱体热解为材料制备手段,实现了SiC纳米线等低维材料的生长与掺杂的精细控制,系统研究其结构-掺杂-光导压阻特性间的相互关系并进行优化,阐明其载流子输运特性及其压阻机理,实现了光导激发和压阻效应的有机耦合,最终实现了SiC材料压阻特性的大幅度强化。..研究工作圆满完成了项目拟定的指标:发表了SCI收录论文23篇(原定指标:16篇),SCI一区Top期刊19篇,IF均大于3(原定指标:IF大于3的9篇),IF大于10的5篇(原定指标:力争发表IF大于10的2篇),获授权发明专利9项(原定指标:申请发明专利3项)。..本项目所实现的对SiC低维材料生长精细控制原理极其物性协同强化,对其他半导体低维材料材料生长及其器件研发具备一定的借鉴意义,所报道的SiC低维材料压阻特性处国际领先水平,在各类压力传感器领域具有一定的潜在应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
基于巨压阻效应的高灵敏SiC纳米带压力传感器基础研究
高功率4H SiC光导开关超高耐压形成方法研究
高稳定性高温压力传感器的研究
基于非接触测量的超高温MEMS压力传感器基础研究