Energy is the basis of human society development. Exploiting and utilization of new clean energy sources is crucial to the sustainable development. Researchers have carried out extensive efforts on energy storage materials to pursue higher energy and power densities. However, sustainability, another important index, is often neglected. Traditional electrode materials are mainly inorganic metal compounds with electrochemical activity. These electrodes exhibit certain capacities, but suffer from poor biocompatibility, rising manufacturing costs and safety risks. Large amount of electronic waste after service period also restricts the application in wearable and implantable new energy storage system. Therefore, the development of environmentally friendly, low-cost and biocompatible high performance electrode materials is the inevitable direction of next generation sustainable energy storage system. This project will focus on the electron transport intermediates of the energy metabolism in organisms and search for biomolecules with charge storage capabilities. We will explore the energy storage mechanism through ex/insitu characterization and conduct recombination as well as modification in order to overcome the low conductivity and high solubility in electrolyte. We will devote to develop high performance and biocompatible composite energy storage materials, which will provide experimental and theoretical support for the realization of all-biomass based biocompatible batteries.
能源是人类社会发展的基石,开发新型清洁能源对于全人类的生存和发展至关重要。科研工作者们在储能材料领域开展了大量工作,以追求更高的能量密度和功率密度,却忽略了另一项重要的指标—可持续性。传统的电极材料主要是无机金属化合物,通常具有一定的比容量,但是面临较差的生物相容性、不断攀升的制造成本等问题,在服役期后产生的电子垃圾也制约了其在可穿戴、可植入人体的新能源存储系统的应用。因此,开发环境友好、低成本、高生物相容性的高性能电极材料是新一代可持续能源存储系统发展的必然方向。本项目以生物体能量代谢电子传递中间体为出发点,有效筛选出具有电荷存储潜能的可再生生物分子,通过原位/非原位表征探究其储能机制,并针对其导电性差,易溶解在电解质中的缺点,进行复合、分子改性等方面的探索,力争获得高性能、生态友好的高效复合储能材料,为实现全生物质、生物相容性好的全电池提供多种有用的素材,贡献一些实验论证和理论基础。
能源是人类社会发展的基石,开发和利用新型清洁能源对于全人类的生存和可持续发展至关重要。本课题受自然界具有电荷存储潜能的有机小分子启发,目标是制备多种环境友好、低成本和生物相容性好的高性能电极材料,通过原位/非原位表征分析其储能机理,并针对其结构特点进行复合/改性,力争为新型高性能储能材料系统得构筑贡献一些实验论证和理论基础。项目完成过程中,我们通过理论计算、原位/非原位谱学研究了诸如蒽醌类、噻吩嗪类的有机小分子的储能机理,揭示了究了π-π共轭作用、相表界面微纳结构、离子共掺杂改善溶剂化能对电化学稳定性及电荷传递效率的增强机制,并将其应用于水系锌离子电池、钠离子电池、低温锂离子电池等新型储能体系,为高性能储能材料的制备提供了新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
二维异质复合薄膜材料的可控制备及储锂性能研究
高能高效介电复合储能材料中微纳米叠层结构的制备及储能性能调控机制研究
纤维基无机粒子/导电聚合物三维复合材料的可控制备与储能性能研究
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究