The density, sensitivity and other properties of energetic compounds could be modified through cocrystallization, as a result, the required performance will be acquired. Because the compounds’ thermodynamic behavior based on the cocrystal preparation, which is correlative with their structures, are still insufficient, a phase chemical study using ternary phase diagrams which is representative of (Cl-20)-CCF (Cocrystal former)-organic solvent system at different temperatures will be conducted via a semimicro phase equilibrium method. Under the guidance of a series of ternary phase diagrams which were established in this study, several energetic cocrystals can be prepared effectively, and single cocrystals of target compounds will be cultivated. The investigation will focus on structures, bonding formation behaviors and morphologies of the cocrystal compounds using SXRD/SEM and other technologies. The combustion energies of the cocrystals are determined with a precise rotating bomb calorimeter, and the standard enthalpies of combustion and ones of formations will be calculated. With these data obtained, the related energy property can be evaluated successfully. The characteristic drop height and explosion temperature of the cocrystal compounds can be determined with sensitivity apparatus etc, and following that, the safety property can be easily assessed. The equations of thermodynamic of the heating process during chemical reaction can be established by using a microcalorimeter and the specific heat capacity of the target compounds can be measured by a micro DSC. The relationship between the structure and the performances of the target compounds can be clearly associated. This study can effectively reveal the mechanism of the formation of the cocrystals and leading to obtain the thermodynamic and kinetic data for supporting effective and controllable preparation of the target cocrysatl compounds. The results of the project can not only understand the problem between high performance and guarantee safety of energetic compounds but also can enrich the organic crystal synthesis and preparation for promoting their applications in the fields of explosives, propellants and pyrotechnics.
通过共晶可改变含能化合物的密度、感度等,获得需要的性能。然而与结构相关的共晶制备的热力学依据明显不足。本项目拟经半微量相平衡法开展代表性的(Cl-20)-CCF-有机溶剂三元体系在不同温度下的相化学研究,获得相图;在相图指导下获得系列含能化合物有效共晶,培养单晶,用SXRD/SEM等技术获知其结构、成键规律和形貌等信息;用精密转动弹热量计测定其燃烧能,计算其标准生成焓,评价其能量特征;用感度仪等测定撞击感度特性落高、爆发点等,评价其安全性;用微热量计进行制备反应研究,获得过程的热产生函数; 用Micro DSC测定比热容获取相关热力学数据;关联目标物的结构和物性,揭示有效共晶的形成规律和形成机理,为目标物的可控构筑提供热力学和动力学依据。研究结果在适时解决含能化合物高能量、低感度矛盾的同时,可丰富有机晶体理论,推进该类化合物在炸药、推进剂和火工品研究中的应用。
致力于高能量、低感度化合物的合成一直是含能化合物研发的首要任务。 然而,提高能量水平的同时, 感度随之提高、稳定性降低已成一对尖锐的矛盾。通过共晶可改变含能化合物的密度、感度等,获得需要的性能。然而与结构相关的共晶制备的热力学依据明显不足。在此背景下,采用半微量相平衡法,在288.15 K、298.15 K和308.15 K下分别建立了(CL-20)-(TNT或HMX)-(乙腈或乙酸乙酯)三元体系的相图。研究了共晶在不同溶剂中的热力学稳定区域、共晶的溶解行为以及温度和溶剂的选择对相图整体形貌和对称性的影响。在相图的指导下,实现了在共晶的热力学稳定区域对共晶的有效可控构筑,同时也验证了(CL-20)-( TNT或HMX) -(乙腈/乙酸乙酯)三元相图的可靠性。. 基于已构筑的三元相图,经等温浆料转化结晶法在相图中共晶的热力学稳定区域内选择试验点,将CL-20、TNT或HMX和溶剂以对应于所选试验点的质量配比混合来制备共晶。经扫描电子显微镜、 傅里叶变换红外光谱、 拉曼光谱、粉末X射线衍射、固体核磁共振仪、差式扫描量热分析对制备的共晶进行了形貌、结构和热稳定性表征。通过测定共晶的燃烧焓,计算得出共晶的标准生成焓。依据共晶的标准生成焓和Kamlet-Jacobs经验方程计算出了共晶的爆轰参数(爆压和爆热),评价了共晶的能量特征和安全性能。. 采用微量热计测定了共晶溶剂中的溶解焓,获得了相关的热力学参数,建立了共晶在DMF和DMSO中溶解时的热动力学方程。另外,用重量分析法测定了CL-20•TNT分别在乙腈、乙酸乙酯、甲醇、乙醇、间二甲苯、三氯甲烷、丁酮、甲苯、1,2-二氯乙烯九种单一溶剂中和(甲醇+乙酸乙酯)、(1,2-二氯乙烷+乙酸乙酯)二元溶剂中的溶解度;获得了CL-20•TNT共晶体在溶解过程中的实验溶解度和相关方程以及热力学参数,为促进CL-20•TNT共晶的工业结晶过程和进一步的工业化提供了理论参考依据。. 基于降低机械感度、降低静电感度及在降感同时提高热稳定性等,还分别开展了脲醛树脂、聚苯胺、六方氮化硼纳米片(hBNNS)(聚多巴胺为桥联壳层)对含能化合物的包覆研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
敏感性水利工程社会稳定风险演化SD模型
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
夏季极端日温作用下无砟轨道板端上拱变形演化
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
新型温度响应型智能蠕虫状胶束体系构筑的相化学和热化学研究
含金属间化合物相包晶合金的相选择及包晶反应机制研究
自生长含钛化合物板晶复相陶瓷研究
锌盐与α-氨基酸配合物的相化学、热化学研究