To enhance the energy absorption of the rear plate of composite armor is one of the main ways to improve the ballistic performance of composite armor, because the shear thickening fluid can absorb lots of the energy during the progress of shear thickening, the aluminium foam filled with shear thickening fluids (STFs) is used as a core of composite armour to enhance the energy absorption properties of the rear plate of ceramic composite armour and its ballistic performance in this project. The objective of this project is to investigate the anti-penetration mechanism of aluminium foam filled with shear thickening fluids/ceramic composite armour and its optimum design. In the project, the dynamic mechanical properties and deformation mechanism of the STFs and aluminium foam filled with STFs will be investigated by modified split Hopkinson pressure bar, falling hammer technique and test method, which is used to analyze the effect of stress wave in the STFs and it's filling in the aluminium foam, and to disclose the critical phase transition conditon of STFs and the energy dissipation and coversion mechanism of STFs and the aluminium foam filled with STFs. Then, the effective constitutive model equation and numerical calculation model are developed, which is employed to perform the analysis of the parameter sensitivity and develop the parameterized optimization design model for the dynamic energy absorption properties of aluminium foam layer filled with STFs; The role played by the STFs during the penetration process is studied by performing the penetration experiments, which is used to disclose the mechanism of load transfer and load support among the layers in the ceramic composite armor, and develop the dynamic mechanical response equation. Based on the parameterized optimization design model, the optimum design model of the aluminium foam layer filled with STFs/ceramic composite armor will be achieved, which is used to provide the theory basis for the application of the STFs in the ceramic composites armour and the safety protection field.
增强陶瓷复合装甲背板吸能特性是提高其抗弹性能的主要途径之一,由于剪切增稠液具有可通过发生剪切增稠效应而耗散大量能量的特性,本项目提出采用剪切增稠液填充泡沫铝作为复合装甲芯层,以实现增强背板吸能特性并提高复合装甲抗侵彻性能。本项目以揭示剪切增稠液填充泡沫铝/陶瓷复合装甲抗侵彻机理为目标,通过改进霍普金森压杆和落锤加载技术及测试方法,研究剪切增稠液及其所填充的泡沫铝材料中的应力波效应,揭示剪切增稠液相变临界条件及其填充泡沫铝芯层的能量耗散和转化机理,建立剪切增稠液填充泡沫铝等效本构方程和数值计算模型,开展参数敏感性分析,建立剪切增稠液填充泡沫铝的能量吸收参数化优化模型;通过开展侵彻实验,分析剪切增稠液在抗侵彻过程中所起的作用,揭示陶瓷复合装甲各层间载荷传递机制和承载机理,建立动力学响应方程,开展剪切增稠液填充泡沫铝芯层的优化设计,为剪切增稠液在复合装甲和安全防护领域中的应用提供理论基础。
增强陶瓷复合装甲背板吸能特性是提高其抗弹性能的主要途径之一,由于剪切增稠液具有可通过发生剪切增稠效应而耗散大量能量的特性,本项目提出采用剪切增稠液填充泡沫铝作为复合装甲芯层,以实现增强背板吸能特性并提高复合装甲抗侵彻性能。剪切增稠液是一种由纳米颗粒和分散介质组成的悬浮液,在冲击载荷作用下,其粘度会急剧增大甚至达到类固态,当载荷撤销后,其又恢复原流体状态。这一过程可耗散大量的能量。因此,在应力波衰减和装备防护领域有着广泛的应用前景。本项目主要开展了以下研究内容:(1)采用纳米线、石墨烯制备了高性能剪切增稠液,粘度峰值得到了大幅度的提升;(2)利用霍普金森压杆开展了不同剪切增稠液在高应变率下的动态力学性能研究,分析了纳米线和石墨烯在增强剪切增稠液承载能力的机理,讨论了流体润滑力对承载能力的贡献;(3)开展了剪切增稠液浸透的纤维布的纤维拔出实验和抗侵彻实验,实验结果表明,纳米线和石墨烯增强的剪切增稠液可以大幅度提升纤维布的抗穿刺性能和抗弹性能;(4)开展了不同剪切增稠液浸透凯夫拉纤维布的抗侵彻实验,实验结果表明,石墨烯增强纯剪切增稠液能大幅度的提升凯夫拉纤维布的抗侵彻性能,其机理主要包括石墨烯增强剪切增稠液能有效的阻碍纤维之间的滑移和有效的分散侵彻集中载荷;(5)开展了剪切增稠液陶瓷颗粒复合装甲的抗弹性能研究,结果表明,剪切增稠液能有效提高陶瓷复合装甲的抗弹性能和应力波衰减。本项目的研究为剪切增稠液在陶瓷复合装甲中的应用提供了重要的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
周期胞结构复合装甲抗聚能射流侵彻机理研究
陶瓷/泡沫铝复合装甲动态力学响应研究
前置陶瓷液舱复合结构抗爆炸成型弹丸侵彻机理研究
新型陶瓷复合结构抗侵彻性能研究