The carbon and water cycles of forest ecosystem are important part of the biogeochemical cycle of the land surface, and it's of crucial importance to correctly evaluate the coupling effects between them to improve the accuracy of the estimation about the carbon source/sink on regional scale. Plantation vegetations are important components of forest ecosystem in China, and the carbon sequestration capability and its potential of the plantation vegetations is of great significant at regional scale. In this project, we select Zhejiang Province, where large area of Chinese fir exists, as the research area. We plan to use forest inventory data, field investigations and experiments, and remote sensing data to retrieve the biomass, water use efficiency, and canopy parameters of the Chinese fir in large area. Key objectives in this project include: 1) Analysing the coupling effects between carbon and water cycles in Chinese fir plantations and their relationships with the stand age; 2) Using Bayesian technique to determine the distributions of the key input parameters of the forest growth model, and applying data assimilation algorithms to improve model prediction accuracy by assimilating multi-scale observation data; 3) Analysing the spatial and temporal evolution features of carbon storage of Chinese fir plantations under the historic climate background and future climate change scenarios; 4) Clarifying the status quo of carbon storage and its potential from the spatial distribution pattern point of view, and implementing a set of methodologies for the estimation of carbon sequestration for plantations, and providing scientific basis for carbon cycle research and regional-scale plantation management.
森林生态系统碳水循环是陆地表层生物地球化学循环的重要组成部分,正确评估二者间的耦合作用及其对森林碳汇的影响,是提高区域尺度上碳源汇估算准确性的重要环节。人工林植被是我国森林生态系统的重要组成部分,开展区域尺度上的人工林固碳效应及其潜力研究意义重大。本项目以杉木人工林分布广泛的浙江省为研究区,运用森林清查资料、样地调查、野外实验和遥感资料相结合的方式,获取大范围的杉木人工林的生物量、水分利用效率及冠层参量等数据;探讨碳水通量的耦合规律及其与林龄之间的关系;利用贝叶斯方法优化确定森林生长模型的关键参数,研究多尺度观测资料的数据同化算法以改善模拟精度;结合历史气象资料及未来气候变化情景模式,分析区域内杉木人工林碳蓄积能力的时空变化特征;阐明区域内杉木人工林碳储量及其潜在碳汇能力的空间分布格局,建立较为完善的人工林固碳效应估算的方法体系,为区域尺度上的碳循环研究及人工林管理提供重要的科学依据。
森林生态系统碳水循环是陆地表层生物地球化学循环的重要组成部分,正确评估二者间的耦合作用及其对森林碳汇的影响,是提高区域尺度上碳源汇估算准确性的重要环节。人工林植被是我国森林生态系统的重要组成部分,开展区域尺度上的人工林固碳效应及其潜力研究意义重大。本项目以杉木人工林分布广泛的浙江省为研究区,运用森林清查资料和遥感资料相结合的方式,获取了部分浙江省内杉木人工林样地的生物量等数据;利用敏感性分析方法系统分析了模型参数的敏感性及其时间动态特征;利用贝叶斯方法优化确定了森林生长模型的关键参数,研究了多尺度观测资料的数据同化算法以改善模拟精度;结合历史气象资料及未来气候变化情景模式,分析了区域内杉木人工林碳蓄积能力的时间变化特征;阐明了区域内杉木人工林碳储量及其潜在碳汇能力的时间动态特征,为区域尺度上的碳循环研究及人工林管理提供重要的科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
Enhanced piezoelectric properties of Mn-modified Bi5Ti3FeO15 for high-temperature applications
基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例
智能煤矿建设路线与工程实践
贵州织金洞洞穴CO2的来源及其空间分布特征
耦合多源数据的森林碳水通量模型驱动参数同化机制
多源数据与土壤盐分运移模型同化及其不确定性研究
多源高分光学遥感数据与作物模型同化的不确定性研究
削减分布式水文模拟不确定性的多源数据同化方法