Neurons and neural network are the foundations of the nerves system. Related researches are close to the essence of life and show great scientific significance and application value. Until now, most studies focused on the recording and analysis of extracellular electrophysiological signals of living cells. The on-time detection of neurotransmitters is hard to achieve. Aim at this issue, in this project, we will make time and spatial resolution detection of dopamine in dopaminergic neural network via complementary metal oxide semiconductor (CMOS)-micro-electronic mechanical system (MEMS) technology, using amperometry with high sampling frequency as the detection method. We plan to design a microelectrode array (MEA) with 1024 channels, 32×32 electrodes. The spatial resolution would be enhanced greatly. The integration of CMOS will provide parallel detection at 1024 electrodes. PC-12 living cells will grow on the MEA to form the nerve network in-situ. We plan to apply chemical modification method on the surface of the MEA to achieve selective detection of dopamine, which is a typical neurotransmitter in dopaminergic neural network. We will study the effects of multiple stimulations from electricity and medicines to the neurotransmitter release from dopaminergic neutrons and build dynamic models for further investigation. The combination of the microelectronic technique, electrochemical analysis and cell-based biosensor in this project shows great perspective in the guidance of clinical research and nerve drug screening.
神经元和神经元网络是神经系统的基础,与此相关的研究接近生命存在的本质,具有重大的科学意义和应用价值。目前对神经网络信号传递的研究集中在电信号的采集和分析,而对于神经递质的实时监测难度很大。本项目针对这一难题,拟基于互补金属氧化物半导体集成电路(CMOS)-微机电制造(MEMS)技术结合,采用高采样频率的计时电流法,对神经递质多巴胺在神经网络中的释放进行时空分辨监测。我们将设计制造1024通道,32×32位的微电极阵列(MEA),提高检测的空间分辨率;同时将CMOS芯片与MEA结合,实现高时间分辨的同步检测。在MEA电极表面原位生长PC12神经细胞网络,通过化学修饰方法提高多巴胺检测的选择性。研究电刺激和神经类药物刺激对多巴胺在突触间传递的影响。深入探讨多种刺激对神经元化学信号传递的作用机制,建立动态模型。该项目将微电子技术、电化学方法与细胞传感结合,可用于指导临床实验和神经类药物筛选。
神经元和神经元网络是神经系统的基础,与此相关的研究接近生命存在的本质,具有重大的科学意义和应用价值。目前对神经网络信号传递的研究集中在电信号的采集和分析,而对于神经递质的实时监测难度很大。项目实施过程中,我们培育了PC12神经细胞及网络,采用尼古丁、高K+刺激、缺氧刺激等方式,利用超微电极电化学技术探索神经递质释放过程。此外,我们采用MEMS和CMOS技术,设计并制造了256位微电极阵列(MEA)。在MEA界面上,利用神经生长因子(NGF)培养PC12神经网络。通过联用MEA与全内反射荧光显微镜,实现了对神经细胞网络动作电位和神经递质传输的同步测量。这种方法背景信号低,信噪比高,具有时空分辨响应性,可以满足神经细胞网络监测要求。本项目完成了预期的研究目标,到项目结题止,发表SCI文章8篇,包括Angew. Chem. Int. Ed. (1篇),ACS Nano (1篇), Chem. Sci. (2篇),Anal. Chem. (1篇),Chem. Commun.(1篇),Anal. Chim. Acta(1篇),Electrochem. Commum. (1篇),申请国家发明专利两项,培养研究生7名。
{{i.achievement_title}}
数据更新时间:2023-05-31
奥希替尼治疗非小细胞肺癌患者的耐药机制研究进展
超声无线输能通道的PSPICE等效电路研究
TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老
东太平洋红藻诊断色素浓度的卫星遥感研究
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
纳米电极电化学及荧光显微成像时空分辨监测单细胞释放
太阳能高温热化学储能过程的能质传递转换特性
多层神经元网络的时空同步及簇节律传递动力学研究
体外多巴胺能神经元网络的三维构建及原儿茶酸的调节作用研究