In the area of denture performance testing and evaluation, with the current design, the chewing robot has a low level of chewing function, so it can’t simulate the real occlusal trajectory and real occlusal force at the same time. Based on the characteristics of the human mastication system and occlusal contact, this proposal studies the key technologies of the bionic chewing robot including the occlusal motion planning, optimal distribution of driving forces, and adaptive compliance force control. At first, it studies the occlusal contact of the chewing robot, optimally designs the bionic upper jaw, lower jaw and temporomandibular joint, and sets up the simulated oral environment. Second, in order to realize the complex occlusal movement cycle, the occlusal motion planning method based on the kinematics of the occlusion and the temporomandibular joint is proposed. Then the driving forces to obtain the designed occlusal force are optimally distributed by analyzing the actuation redundancy characteristics and biomechanics of the mastication system. And a hybrid occlusal force/positon adaptive compliance force control strategy is presented. Finally, with the aim of performance evaluation, the developed techniques are implemented in a developed prototype bionic chewing robot system through experimentation, and the performance testing and evaluation of denture are also carried out. This research will provide key theoretical and technical support for the development of the bionic chewing robot, and provide a more accurate and effective experimental method for dental technology. Furthermore, it has important theoretical and practical significance in enriching robot bionic principle and control strategy.
面向牙科义齿性能测试与评估领域,针对咀嚼机器人仿生度不足,不能同时真实再现咀嚼运动过程中咬合轨迹与咬合力的问题,本课题基于人体口颌系统与咬合接触的特征,研究仿生咀嚼机器人咬合运动规划、驱动力优化分配、自适应柔顺力控制的关键技术。研究咀嚼机器人咬合接触,优化设计咀嚼机器人仿生上、下颌结构和仿生颞下颌关节,建立模拟口腔环境;提出基于咬合接触与颞下颌关节运动学的仿生咀嚼机器人咬合运动规划方法,实现复杂咬合运动循环;基于口颌系统的冗余驱动特性和生物力学,以咬合力为目标,优化分配冗余机构的驱动力;提出一种咬合力和咬合轨迹混合控制的自适应柔顺力控制策略;研制具有模拟口腔环境的仿生咀嚼机器人系统,对常见义齿性能进行测试与评估。本课题研究将为仿生咀嚼机器人研发提供关键理论和方法,同时为口腔修复工艺提供准确有效的实验手段,对丰富机器人仿生原理及控制策略具有重要的理论意义和应用价值。
在牙科义齿性能测试与评估领域,目前多采用各种万能试验机和摩擦磨损试验机测试义齿,这些测试设备不能模拟人类口颌系统中复杂的咬合接触和载荷形式。为保证义齿性能测试的有效性和准确性,本项目基于人体口颌系统与咬合接触的特征,研究仿生咀嚼机器人咬合接触机理、咬合运动规划、驱动力优化分配、自适应柔顺力控制的关键技术。优化设计咀嚼机器人仿生上、下颌结构和仿生颞下颌关节,引入模块化牙颌模型和恒温唾液滴注系统。提出基于咬合接触和颞下颌关节运动学的仿生咀嚼机器人咬合运动规划方法,实现复杂咬合运动循环。采用伪逆法建立冗余机构驱动力优化分配的数学模型,进行驱动力的优化分配。相比非冗余驱动机构,驱动力更有效地转化为下颌动平台的输出力。提出阻抗控制理论和自适应控制理论相融合的咬合力柔顺控制,其对未知环境具有一定的鲁棒性,最终实现咬合力在大范围内趋近于期望值。搭建仿生咀嚼机器人实验平台,验证咀嚼机器人运动轨迹与受力。对常见义齿性能进行测试,评估结果显示咀嚼机器人能够承受较大的义齿静态破断力,以及数万次的循环载荷。本项目所提模型与方法为仿生咀嚼机器人研发提供关键理论和方法,可为口腔修复工艺提供准确有效的实验手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
面向食品材料物性检测与评价的仿生咀嚼机器人研究
高性能液压驱动四足仿生机器人基础理论与关键技术研究
面向仿生机器人的水压电液驱动技术研究
面向胃肠道疾病无创诊查的微型仿生机器人系统关键技术研究