Tukey reduction and cardinal invariant are closely related to each other. Since 1980, a group of scholars led by T.Bartoszynski、D.H.Fremlin、 S.Todorcevic、A. Louveau、S.Solecki researched on the Tukey reduction relation among a large number of directed partial orders and found many global structure theorems about Tukey reduction, which enriched the theory of Tukey reduction. This project aims at a systematic investigation of the theory of Tukey reduction,we mainly consider problems in three aspects, which include researching the Tukey reducibility of two concrete partial orders,finding more global structure theorems and new partial orders, and discovering more relations of Tukey reduction and Forcing theory. By considering the above questions, we hope to discover some important applications of cardinal invariants, Tukey rection and Forcing theory to related mathematical branches, thus will improve the influence of methods and results from set theory in other mathematical branches.
Tukey归约和基数不变量有着紧密而深刻的联系。从1980年起,以T.Bartoszynski、D.H.Fremlin、S.Todorcevic、A.Louveau、S.Solecki等为首的一批学者研究了大量定向偏序之间的Tukey归约关系,发现了很多全局的结构性定理,极大的丰富Tukey归约的理论。本项目旨在系统的考虑Tukey归约结构,主要考虑如下的三类问题:两个具体偏序之间的Tukey归约关系、发现更多全局性结论和更多新的偏序、Tukey归约和Forcing之间的更多联系。通过上述问题的研究,我们希望发现基数不变量、Tukey归约及Forcing理论在相关数学分支中的重要应用,促进集论方法和结果在数学分支深层次的渗透。
Tukey归约和基数不变量有着紧密而深刻的联系。从1980年起,以T.Bartoszynski、D.H.Fremlin、S.Todorcevic、A.Louveau、S.Solecki等为首的一批学者研究了大量定向偏序之间的Tukey归约关系,发现了很多全局的结构性定理,极大的丰富Tukey归约的理论。本项目旨在系统的考虑Tukey归约结构,主要考虑如下的三类问题:两个具体偏序之间的Tukey归约关系、发现更多全局性结论和更多新的偏序、Tukey归约和Forcing之间的更多联系。通过上述问题的研究,我们发现基数不变量、Tukey归约以及Forcing理论在相关数学分支中的重要应用,促进集论方法和结果在数学分支深层次的渗透。
{{i.achievement_title}}
数据更新时间:2023-05-31
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
天津市老年人平衡膳食模式与认知功能障碍关系研究
Tukey 归约与基数特性
多领域仿真中约束结构保持的模型归约求解方法研究
面向统计机器翻译的同步短语树结构归约机制研究
归约规则法的仿人控制研究