Type 2 diabetes has become one of the major public health challenges in China. There is strong evidence that type 2 diabetes is predictable and preventable. People with impaired glucose regulation are usually considered to have a high risk for future diabetes. However, using the oral glucose tolerance test (OGTT) to identify individuals with impaired glucose regulation is impractical at the population level. In addition, the use of the OGTT to identify high-risk individuals does not consider other risk factors associated with the development of incident type 2 diabetes. A number of risk scores for predicting incident diabetes, based on self-assessed information, biological measures and even genetic markers, have been derived from different ethnicities. However, the validity and applicability of these tools to the Chinese population is questionable since they were derived from circumscribed populations with different risk factor profiles and ethnicities. Therefore, development of efficient and validated tools for predicting risk of incident type 2 diabetes in the Chinese population is critical for the most effective and efficient prevention. Using data from diabetes cohort studies conducted in Shanghai communities, this study is going to develop simple and advanced risk prediction tools for incident type 2 diabetes which are applicable to the Chinese population; to translate the diabetes risk assessment tool based on self-assessed information into simple scoring system; to establish an effective and efficient stepwise screening strategy for the earlier identification and prevention of high-risk individuals for incident diabetes.
2型糖尿病已经成为我国主要公共卫生问题之一,然而强有力数据表明2型糖尿病是可预测和可预防的。糖调节受损个体通常被认为将来发生糖尿病的风险增加。然而在群体水平实施口服葡萄糖耐量试验筛查糖调节受损个体并不实用,同时此项方法并未考虑其他的糖尿病合并危险因素。迄今多个国家已经制定了一系列基于自我评估因素、生物学测量因素甚至遗传标志物的糖尿病发病风险预测模型。然而,这些风险模型是建立在具备不同危险因素谱和种族的特定人群中,在中国人群中的实用性和适用性值得商榷。因此,建立高效可推广的中国人2型糖尿病发病预警模型对于有效和高效防治糖尿病极为关键。本研究将充分利用上海多个社区建立的糖尿病队列研究资料,建立适用于中国自然人群的评估糖尿病发病风险的简易和复杂预测模型,制定由自我评估因素构建的简易评分量表,确立经济有效的序贯筛查流程,为糖尿病发病高风险人群的早期检出和早期防治提供经济实用的筛查手段。
2型糖尿病是我国主要公共卫生问题之一,建立高效可推广的中国人2型糖尿病发病预警模型对于有效和高效防治糖尿病极为关键。本课题使用前瞻性队列研究-上海糖尿病研究2资料,平均随访时间为5.3年,构建了由教育程度、吸烟史、糖尿病家族史和既往高血糖史4项简易参数用于预测5年后新发生糖尿病的多因素回归模型。该模型预测5年糖尿病发病风险的AROC(受试者工作特征曲线下面积)值为0.66(95%CI,0.61-0.71),Hosmer-Lemeshow卡方值为7.0(P=0.22)。该模型对于5年糖尿病发病高风险个体的检出能力优于单独采用基线空腹血糖(FPG)、糖化血红蛋白(HbA1c)、体重指数(BMI)和腰围。队列研究的结果支持了使用非创伤性风险得分作为一个初步的筛选手段以发现糖尿病高危个体。本课题进一步探讨联合生物学因素提高对糖尿病高危个体的早期检出。研究人群来自于2013.4至2014.8在上海临港新城泥城镇对全部居民所进行的慢病调查,共有18038名居民(年龄40-75岁)入组。在泥城社区的非糖尿病人群中,建立了以年龄、性别、糖尿病家族史、高血压史、饮酒、体重指数及腰围评估人群伴发未知高血糖风险的简易模型。其检出未诊断糖尿病的AROC值为0.63(95%CI,0.62-0.64),与中国糖尿病风险评分表判别能力类似。在此简易模型基础上,加入非血糖相关的空腹生物学测定因素,包括高甘油三酯血症、C-反应蛋白及r-谷氨酰胺酶浓度升高,能使预测模型的AROC值从0.65增加至0.71(P<0.001)。联合FPG或HbA1c,能进一步提高预测模型的分辨力,同时模型预测的糖尿病患病风险与实际患病率接近。尤其值得注意的是,包含血糖指数等空腹生物学测定因素的复杂预测模型对现患、未诊断糖尿病的检出率优于仅仅使用FPG进行筛查。同时采用序贯糖尿病筛查流程,即首先采用非创伤性、简易参数评估异常高血糖患病风险,随后对其筛查出的高风险人群,采用联合生物学测定因素的复杂评估模型,对于糖尿病患病个体的检出,其特异性、敏感性、阳性及阴性预测值均与在普通人群中直接应用复杂参数的预测模型相似。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
基于LASSO-SVMR模型城市生活需水量的预测
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
低轨卫星通信信道分配策略
北京市房山区成人2型糖尿病发病风险模型的建立与评估
中国人群血浆脂质谱与2型糖尿病发病风险的关联研究
胰岛细胞体外灌注模型建立及Ⅱ型糖尿病发病机理的研究
通过SNP搜索和克隆中国人2型糖尿病易感基因