In recent years, power systems in vehicles, ships and aircrafts have made a great change due to the sustained and rapid development of microgrid technologies. However, due to the wide connections of propulsion motors, electromagnetic rail guns and other large constant power loads and strong pulse power loads, the stability problem in such on-board microgrid system is more serious than that in the traditional one. In this context, the project presents a systematic study of the stability boundary and control strategies on DC microgrid system with constant power loads (CPLs) and pulse power loads (PPLs) simultaneously. A systematic assessment of the impact of the two typical loads on the DC micro-grid stability and their internal relations is well presented. Moreover, the influence mechanism of key system parameters on the DC microgrid stability is discussed. Then a capacity matching method of the distributed generations and storage system is proposed based on the optimization of the system stability margin. In addition, considering that the future combat equipment may be required to be with small size and little weight, the stable region and domain of attraction of a microgrid system with small inertia is thus studied in detail. Based on the active damping and dynamic energy management, a coordinated control strategy is then put forward. The research aims to clarify the key theoretical constraints and technical issues of the safe and stable operation of the DC microgrid, so as to provide a theoretical basis for the optimum design and advanced control of such all-electric army marine platform integrated power systems.
近年来微电网技术的持续快速发展带动了车辆、舰船和航空器电力系统升级改造的步伐。但由于推进电机、电磁轨道炮等大量恒功率、强脉冲用电负荷的接入,该类车载式(或舰载式、机载式)微网系统的稳定性问题比传统微电网更为突出。在此背景下,本项目系统研究恒功率负荷、脉冲功率负荷同时接入直流微网后系统的稳定边界与控制策略问题。通过系统评估两类典型负荷对直流微网稳定性的影响机理及其内在联系,深入研究系统关键参量对微网稳定性的影响规律,并提出一种基于稳定裕度优化的分布式电源、储能系统容量的匹配方法。同时,为贴近未来作战装备体积小、重量轻的实战化应用需求,项目重点研究弱惯性微网环境下系统的稳定域、吸引域问题,拟研究并提出一种基于有源阻尼和动态能量管理相结合的微网协调控制策略。项目研究旨在厘清制约车载微电网运行安全稳定的关键理论、技术问题,从而为我军全电化陆战平台综合电力系统的优化设计、先进控制提供理论依据。
纵观近年来世界范围内的军事变革,武器装备与载体的信息化、智能化是一个重要发展趋势。其中,陆战平台的全电化和舰船综合电力系统的智能化被公认为是未来战场作战装备的重要特征。车载微电网的提出和研究正是致力于破解制约装甲车辆、舰船和航空器电力系统稳定性、可靠性的关键理论和技术问题。项目研究了推进电机、电磁轨道炮等大量恒功率、强脉冲用电负荷的接入下,该类车载式微电网系统的稳定边界与控制策略问题。一是建立了计及分布式发电系统、负荷在内的车载直流微电网的大信号详细模型和简化模型,能够较为准确地反映系统的稳态、暂态响应特性;二是深入研究了系统关键参量对微网稳定性的影响规律,提出了一种基于稳定裕度优化的分布式电源、储能系统容量的匹配方法,为部件选型提供了重要参考依据;三是研究并提出了一种基于车载微电网的能量管理和动态功率平衡控制策略,提高了系统的运行效率;四是提出了一种车载微电网的电能质量治理对策,有效抑制了低次谐波对敏感负荷的扰动问题。项目研究成果成功应用于我国第一辆自主研制的基于轮毂电机驱动的电传动装甲车辆,取得了较为显著的军事和经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
基于图卷积网络的归纳式微博谣言检测新方法
地震作用下岩羊村滑坡稳定性与失稳机制研究
面向恒功率负荷的直流微电网群稳定性分析与控制算法设计
应对大规模停电的孤岛微网有效负荷支撑策略研究
基于电压补偿和负荷供需平衡的风光储微网优化控制策略
考虑信息物理安全风险的直流微网群分布式自治控制研究