With the rapid development of electronic and information engineering, robotics and advanced manufacturing, flexible devices have been used more and more extensively. A novel ultrasonic micro transfer printing (UMTP) method is proposed for flexible device manufacturing considering the development trend of micro/nano devices and their manufacturing methods. By using mechanical dynamics, fracture mechanics and finite element method, the equivalent model of interfacial competing fracture during UMTP is established, and then the mechanism of UMTP is revealed. The integrated design methodology of ultrasonic transducer system and functional stamp is discussed, and the integrated design and characteristic investigation are carried out. Taking the interfacial force during UMTP process as the characterization, the online monitoring and active control strategy of UMTP process are studied based on modern micro/nano measurement, manufacturing and control methods. Considering the extreme motion requirements of UMTP system during high efficiency and precision UMTP, the transfer printing positioning system guided by micro-vision system is established to realize high speed precision positioning. Fundamental process experiments are carried out for typical transfer printing process, and the influences of key ultrasonic parameters, velocity and other parameters on the UMTP quality and efficiency are investigated. On this basis, the process parameters of UMTP are optimized. The study can provide basic theoretical and key generic technical guidance for the development of micro transfer printing and other related manufacturing science and technology.
随着电子信息、机器人技术和高端制造的迅速发展,柔性器件的应用越来越广泛。针对微器件及其制造的发展趋势,提出一种面向柔性器件集成制造的新型超声微转印方法。结合机械动力学、断裂力学以及有限元方法,建立超声微转印过程界面竞争分离的等效模型,揭示其转印机理。探讨超声换能系统与功能性印章的综合设计方法,完成一体化设计与特性研究。以转印过程的界面力作为信息表征,基于现代微纳测试、制造和控制方法,研究超声微转印过程在线监测与主动控制策略。考虑到高效精密超声微转印对转印系统运动的极端要求,搭建显微视觉导引的转印定位系统,实现微转印的快速精确定位。针对柔性器件微转印典型过程,进行超声微转印基础工艺实验研究,揭示关键超声参数、运动速度等对转印质量和效率的影响规律,基于此,完成转印工艺参数优化。研究成果可为微转印以及其它相关制造科学与技术的发展提供基础理论和关键共性技术指导。
随着电子信息、生物医学和高端制造技术的迅速发展,柔性器件的相关制造技术得到了广泛关注,微转印作为柔性器件制造的重要方法之一,其相关研究对促进柔性器件的进一步应用具有重要的理论和应用价值。本项目旨在提高微转印操作的效率和可靠性,针对确定性微转印机理与相关关键技术进行了研究。将微转印过程等效成“三明治”模型的界面竞争分层过程,综合考虑预压力、剥离速度和印章粘弹性特性的影响,建立了微转印过程的印章粘附力模型。基于仿生理论,设计了具有微腔体和微通道的新型微转印印章,建立了微腔体内气体压强的理论模型,研究了拉伸距离和拉伸速度对印章吸附力的影响规律,该研究有效解决了微结构印章粘附力控制繁琐的问题,为提高微转印的成功率提供了重要工具。借助微力传感测试单元,搭建了粘弹性印章粘附力测试平台,通过实验研究了预压力和剥离速度对印章粘附力的影响规律,实现了微力测试。为提高微转印定位系统的高精度运动调节能力,研究了精密定位系统的设计方法,设计了一种新型一体式高精度微摆动平台,可实现良好的动静态特性以及两自由度摆动解耦能力。为解决摆动平台在高频驱动下存在迟滞误差的问题,提出了一种考虑系统动态特性的新型P-I逆迟滞模型。与传统的P-I逆迟滞模型相比,该迟滞模型具有更高建模精度,可有效补偿微摆动平台的高频迟滞误差。最终搭建了微转印系统,在此基础上,完成了微转印工艺实验研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
响应面法优化藤茶总黄酮的提取工艺
基于智能软材料的柔性电子新型动态可控转印力学机理研究
基于微接触转印技术的顶发射量子点发光器件研究
柔性电子器件非接触式激光转印的热—力学行为分析与控制
柔性可延展电子有转角印戳转印的力学机理与模型研究