Coal tar is an abundant resource as a byproduct of coke production in iron-steel industry in Liaoning province, where there are sevaral big iron-steel companies such as An-Shan iron-steel company. However, the traditional methods now in practical use cannot efficiently convert coal tar and pitch to products such as value-added fine chemicals and functional carbon materials. How to make effective use of coal tar/pitch to produce value-added products such as functional carbon materials including graphene and carbon fibers for energy conversion and storage remains a big challenge. It is well known that there exist strong π-π interactions between highly condensed polycyclic aromatic molecules in coal tar pitch, which is a bottle-neck key issue that hinders the efficient conversion and utilization of coal tar pitch to functional carbon materials with tuned structure and properties for applications such as energy storage. Our previous yet preliminary work has demonstrated that the reactivity, wettability and rheological properties of coal tar pitch can be improved by partially saturating the polycyclic aromatic molecules in the coal tar pitch. This project aims to develop novel strategies to effectively convert and upgrade coal tar pitch by catalytic hydrogenation of coal tar under mild conditions to produce high quality coal-based jet fuels, fine chemicals, and hydrogenated pitch and/or mesophase pitch with tuned properties. The interations between the polycyclic aromatic molecules, sovlents and catalysts under the real conditions in fixed-bed reactor will be studied in detail. With coal tar pitch and the as-made hydrogenated pitch as precursors, the bottom-up strategies including electrospinning, template surface induction and solvothermal methods will be explored to develop new processes for the controlled synthesis of high-performance carbon materials for energy storage. These efforts will help to shed a new light on the kinetic and thermodynamic nature of catalytic hydrogenation reactions of polycyclic aromatic molecules in coal tar pitch, leading to new methods for the large scale production of high-performance carbon materials with tuned structure and properties, and to lay a solid foundation for efficient utilization of coal tar pitch to produce high value-added materials.
辽宁省煤焦油资源丰富,但深加工技术落后,产品附加值低,如何实现煤焦油/煤沥青的高附加值利用是一个需要解决的重大课题,其中,合成高性能碳材料是其高附加值绿色化利用的一个重要方向,但是,高缩合度和高芳香性分子结构所引起的强π-π作用阻碍/限制了煤沥青的高效可控转化利用。本项目将研究高温煤焦油分级转化的新技术策略,发展煤焦油全馏分固定床加氢新技术;将煤沥青转化为适度饱和的稠环芳烃以降低分子间作用力,提高其反应性、润湿性和流变性,合成煤基喷气燃料和精细化学品等高附加值产物;揭示催化加氢过程中稠环芳烃分子和溶剂的作用机制。以煤沥青及加氢改性精制煤沥青为原料,基于自下而上的技术策略,采用静电纺丝、模板表界面诱导及溶剂热等技术在分子层面实现新结构高性能碳材料的可控制备。将诠释稠环芳烃分子催化加氢反应热力学与动力学本质,建立新结构高性能碳材料的宏量制备新方法,为煤焦油/沥青的高效高附加值利用奠定科学基础。
基于“煤化工精细化”的理念,围绕以煤焦油/煤沥青为原料制备新结构高性能的功能碳材料开展了系统的研究,研究建立了煤焦油/煤沥青分子结构调控新技术、开发了煤焦油/煤沥青为原料选控制备功能性纳微米碳材料的新技术方法,研究了调控微纳米碳材料的结构和形貌、化学组成及物化性质的新方法,揭示了原料分子结构及制备工艺参数对目标功能碳材料的组成、结构及电化学性能的影响规律。基于多相催化反应建立了煤焦油/煤沥青基分子结构调控新方法;提出了高温氨气处理合成氮掺杂多孔碳片的新技术方法;构建了新结构高性能二氧化碳电催化整体催化剂;设计合成了高性能沥青基钾/钠离子电池负极材料,揭示了材料织构对碳材料储钾性能影响规律;提出了超级电容器用煤焦油基多孔碳电极材料合成新技术。基于本项目研究成果的最新进展,项目负责人作为主要参加人,修改制定了“煤焦化焦油加工工程设计规范”等2项国家标准并于2018年正式颁布实施。项目执行期间,2019年获1项辽宁省自然科学一等奖“基于廉价天然材料设计和构筑功能碳材料的新方法”,2018年获1项陕西省科学技术奖二等奖;发表论文SCI 收录论文50余篇;申请及授权发明专利11件(包括PCT专利1件,已在8个国家和地区获得授权)。培养博士生8名,博士后1名,研究生18名。负责人2018-2019年连续入选全球高引科学家名单。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
高温煤焦油高值化利用的基础研究
处理煤制气废水产生的污泥毒性削减及生态资源化利用新方法与机理研究
中低温煤焦油沥青质的组成和结构调控及加氢定向转化机制研究
松脂资源高附加值化学利用的基础研究