A novel body fitted numerical method with Cartesian coordinates for solving the viscous fluid flow is studied in this project. This method takes advantage of Cartesian coordinates and reserves irregular control volumes near boundaries, so this scheme is full body fitted method. It is different from all other Cartesian grid methods. Two benchmark cases and the external flow field of a 2D simple car body have been simulated. Agreement is found with analytical, numerical benchmark and STAR-CD results. All these show that this method is validated. This Cartesian method has the key advantages that the program can be made easily for general geometries because of the use of collocated grids. This method can also be applied in 3-D and turbulence problems.
本项目探索利用直角坐标系在复杂区域上求解粘性流体流动和换热问题的计算方法。该方法的创新点在于利用直角坐标系但通过在边界附近保留不规则控制体使得算法是完全贴体的,这有别于目前流行的各种直角坐标系的算法。所研究的方法具有以下几个特点:完全贴体编程容易、计算量小、适用于粘性流体的流动和换热、适用于几乎任意复杂区域等。
{{i.achievement_title}}
数据更新时间:2023-05-31
复杂系统科学研究进展
智能煤矿建设路线与工程实践
LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响
带球冠形脱空缺陷的钢管混凝土构件拉弯试验和承载力计算方法研究
耐磨钢铁材料中强化相设计与性质计算研究进展
不稳定沸腾换热过程的反问题解法
非线性问题的区域分解法
复杂组合形体对流换热的研究
高波数波动问题的区域分解法