Nano-thermite energetic materials have been widely applied in thermal cutting, synthesis of new materials, micro-energetic devices and other fields with high energy density and fast combustion speed. A novel nano-thermite film of Al/CuO is constructed and its mechanical properties are strengthened, aiming at the problems of uncontrollable exothermic, low hardness and poor adhesion of traditional thermite. The synthesis methods of anti-opal layered porous CuO is explored so as to realize controllable preparation of three-dimensional CuO skeleton structure. The organic surface modification technology and mechanism of nano-Al and porous CuO will be explored deeply; It is demonstrated that organic species need to be studied containing special functional groups, which are used to solve the problem of film hardness and adhesion; Moreover, it is important to assemble new Al/CuO functional film system controllably based on electrophoretic deposition technology, and explore the kinetics of Al, CuO and Al/CuO, single-phase and two-phase respectively and construct mathematical model. It is need to explore the curing mechanism of Al/CuO thin films to achieve effective combination of films and substrates, and forming the evaluation system of energy controllable output, mechanical strength and environmental adaptability of thermite film. The research results can open up a new path for the construction of different thermite films, and provide strong technical support for energetic materials with controllable heat output and reliable mechanical performance.
纳米铝热剂含能材料其能量密度高、燃烧速度快,在热切割,合成新型材料,微型含能器件等领域应用广泛。针对传统铝热剂放热不可控、薄膜硬度低、附着力差等问题,提出构建Al/CuO新型纳米铝热剂薄膜与强化其力学性能的研究思路;探究反蛋白石分层多孔CuO合成方法,实现三维立体CuO骨架结构可控制备;开展纳米Al和多孔CuO表面有机改性技术研究,探究表面包覆方法和机理;筛选含有特殊官能团的有机物种类,力求解决成膜硬度和附着力问题;基于电泳沉积技术可控组装新型Al/CuO功能性薄膜,分别探究Al、CuO和Al/CuO单相和两相的电泳沉积动力学行为,构筑数学模型;探索Al/CuO薄膜固化机制,实现薄膜与基材有效结合;形成功能性含能薄膜能量释放可控性,力学强度以及环境适应性评价体系。研究结果可为不同类型铝热剂薄膜的构建开辟新路径,也为实现含能材料热量可控输出和机械性能可靠性增强提供有力的技术支撑。
项目针对电泳沉积铝热剂薄膜放热可控性不佳、附着力差等问题,系统地完成了Al/CuO新型铝热剂薄膜的制备与强化其力学性能的研究。本项目创新性地开发了有机、无机网络强化含能薄膜的普适性策略,该方法操作简捷、成本低廉、效率高且能够有效提升薄膜与基材之间的作用力。采用软化学方法制备和调控了Al/CuO体系中氧化剂的微观结构,可控合成了多种反蛋白石结构(多孔空心微球、多孔骨架、多孔花片)的CuO材料,并通过电泳沉积技术有效组装了Al/CuO薄膜,其燃烧现象与放热性能均较传统结构的Al/CuO薄膜优异,提高了Al/CuO薄膜含能特性的可控性和高效性;研究了Al/CuO体系中单相、双相的电泳沉积动力学行为,构建了对应的数学模型;重点探究了无机(KCl、NaCl、KNO3、Ce(NH4)2(NO3)6)、有机(PTFE、α-Nafion)固化处理Al/CuO含能薄膜的技术;其一,借用无机材料重结晶和有机物质成膜的特性,将含能薄膜的附着力有效提升至4等级,且薄膜表面均匀、光滑,耐候性好;同时,Al/CuO含能薄膜由于无机盐、有机分子的填充,其致密性得到了加强,从而提升了其能量密度及自蔓延的连续性和高效性,使得处理后的Al/CuO含能薄膜能够快速有效地引燃B-KNO3炸药,有望在微型点火器方向有重要应用。其二,经过Ce(NH4)2(NO3)6溶液处理后的Al/CuO薄膜,反应过程中能够产生约0.37MPa压力(相当于3.7个大气压)是Al/CuO处理前产生压力的7.5倍,有望在安全气囊、固体推进剂等领域有广阔的应用前景;总之,本项目研究的提升电泳沉积含能薄膜放热可控性及强化其附着力的技术方案,有望为高性能微纳含能器件的开发及应用提供技术支撑和研究新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
双吸离心泵压力脉动特性数值模拟及试验研究
敏感性水利工程社会稳定风险演化SD模型
肖特基结构Al/CuO复合薄膜的非线性电爆换能机理
新型杂环硅烷自组装纳米膜制备与铜薄膜沉积研究
薄膜光催化材料的电泳沉积可控制备与性能研究
电泳沉积法制备图案化量子点薄膜及其在新型光电显示中的应用