With the continuous growing velocity of the high-speed trains, the interaction between the railway train and the catenary, the track, the bridge and the ground considerably increases, which directly leads to a range of issues on both the train and the railway line. Hence, how to simulate the random dynamic response of the coupled catenary-pantograph-train-track-bridge-ground system becomes a new research focus. In this application, the theory and numerical method for the random vibration analysis of such a large-scale railway system are intended to be developed. Some remarkable achievements in computational mechanics derived by the applicant and his co-workers, e.g. the pseudo-excitation method, the symplectic mathematical method, will be applied and further generalized in this research to: (1) establish a well-meshed FE model of the large-scale railway system that can take the elasticity of all the components into account; (2) derive the power spectrum densities (PSDs), especially the stress PSD of the large-scale railway system; (3) develop a reasonable subsystem method and the corresponding simulation process for analyzing the random response of the large-scale railway system.
随着现代化高速铁路运营速度的不断提高,铁路车辆与弓网、轨道、桥梁、地基等结构的动力相互作用严重加剧,引发了一系列的问题。如何掌握网—弓—车—轨—桥—路基铁路大系统的动力学行为和规律也就随之成为了新的研究热点。本项目拟在随机振动理论框架下研究有效的铁路大系统随机动力响应行为预测理论与数值方法。其特色之处在于综合运用和发展了近年来由申请人及其所属研究团队所发展的虚拟激励法、辛数学方法等一系列计算力学研究成果,从而实现:(1)建立可以考虑各构件弹性的铁路大系统精细有限元模型;(2)对铁路大系统随机动力响应功率谱、尤其是应力谱进行求解;(3)建立铁路大系统随机振动的子系统分析方法及规范合理的数值仿真分析流程。
本项目以高速列车与弓网、轨道、高架桥等结构耦合动力学系统为研究对象,针对现存的系统自由度过于庞大和随机动力分析方法低效等问题,开展了铁路大系统随机动力行为预测理论与数值仿真方法的研究,包括:1. 基于辛数学理论和傅里叶变换原理,提出了一种用于任意载荷作用下无穷周期结构响应分析的通用频域方法,降低了结构的计算自由度。2. 基于Schur分解理论提出了非经典阻尼系统的稳态随机响应分析方法和非平稳随机响应的精细积分方法。该方法在状态空间下通过将多频点对应的满阵求逆过程转化为上三角阵的求逆过程,有效降低了虚拟激励法对多个频点分别求解动力学方程时的运算量。3. 实现了车辆在轨道上变速行驶时车辆—轨道耦合系统的随机动力响应分析,将空间域内平稳随机轨道不平顺转化为了时间域内平稳/均匀调制的非平稳轨道不平顺。4. 建立了包括接触网、受电弓、车辆、轨道和桥梁的铁路大系统的低自由度直接耦合模型,基于上述理论和方法初步实现了铁路大系统的随机振动数值仿真分析。5. 建立了铁路大系统各构件的精细有限元动力学模型,推导了Mises应力谱的精确表达式,实现了高速列车精细有限元车辆—轨道耦合模型的随机动应力分析与疲劳寿命估计。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
拥堵路网交通流均衡分配模型
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
HOXA11与其天然反义转录本HOXA11-AS在非小细胞肺癌顺铂耐药形成中的相互作用及表观遗传调控
非确定随机声固耦合系统的数值分析与优化方法研究
随机动力系统理论与数值算法专题讲习班
铁路列车--桥梁时变系统的激振源及其随机振动分析方法
量子动力系统振荡问题数值解的理论与方法