Developing green and high-performance K-ion batteries (KIBs) is one of the frontier and hotspot researches in low-cost large-scale energy storage and high-efficiency micro-nano device fields. This project focuses on the design and preparation of Fe/Mn-based layered transition metal oxides by gradient electrospinning, solid-state sintering and co-precipitation method, combined with transition metal ion doping and ion conductor compound coating strategies to construct unique cathode materials, which have an adjustable composition, modifiable surface/interface and controllable fine structure features. This project will study Fe/Mn-based layered transition metal oxide cathodes based KIBs, and use advanced in-situ characterization techniques (in-situ XRD, in-situ XANES, in-situ XPS, in-situ Raman, in-situ TEM etc.) to investigate interaction among crystal structure, surface/interface structure and morphology structure with ion diffusion energy barrier, electron transport and cycling reversibility, and reveal the intrinsic reaction mechanisms of such materials in KIBs. We will assemble the micro-nano devices detecting platform and tracking the relationship among the fine structure including interlayer structure, crystal orientation, vacancy defect, interlaminar chemical bond environment and the electrochemical K-storage performance of Fe/Mn-based layered cathodes in real time. It will feedback guidance and optimize the K-storage performance of the cathode materials to achieve enhanced power density, energy density and cycling life-span of KIBs. This project will bring a new direction for the development of high-performance energy storage devices.
绿色高性能钾离子电池的开发是低成本大规模储能和高效微纳器件领域研究的热点与前沿之一。本项目基于铁/锰基层状过渡金属氧化物的设计构筑,采用静电纺丝、固相烧结和共沉淀等技术,结合过渡金属离子掺杂和离子导体化合物包覆策略,制备具有组分可调、表界面可修饰和精细结构可控的层状过渡金属氧化物正极材料;以基于该正极材料的钾离子电池为研究对象,采用先进原位表征技术探究其晶体结构、界面结构、形貌结构与离子扩散能垒、电子输运、循环可逆性之间的相互作用新效应,揭示电极材料在钾离子电池中的储钾新机制;搭建微纳器件原位检测平台,实时监测正极材料的层间结构、晶格取向、空位缺陷和层内化学键环境等精细结构与电化学储钾性能的构效关系,探明金属离子掺杂和离子导体包覆协同提升储钾性能的耦合新机制,反馈并优化该正极材料的储钾性能,实现钾离子电池储能器件功率密度和能量密度的协同提升,为新型高效储能器件的开发与应用提供新思路。
绿色高性能钾离子电池的开发是低成本大规模储能和高效微纳器件领域研究的热点与前沿之一。本项目基于层状过渡金属氧化物的设计构筑,制备具有组分可调、表界面可修饰的层状过渡金属氧化物正极材料;采用先进原位表征技术探究其晶体结构与电子输运、循环可逆性之间的相互作用新效应,揭示电极材料在钾离子电池中的储钾新机制;实现钾离子电池储能器件功率密度和能量密度的协同提升。.本项目开发了具有组分可调、表界面可修饰和精细结构可控的层状过渡金属氧化物正极材料新技术,揭示了电极材料在钾离子电池中的储钾新机制,探明了金属离子掺杂和离子导体包覆协同提升储钾性能的耦合新规律,成功组装的钾离子软包电池,循环寿命长达500次,能量密度达274 Wh/kg,为提升钾离子电池储能器件的开发与应用奠定基础。基于以上成果在Angew、Advanced Materials、Advanced Energy Materials等期刊发表SCI论文26篇,申请专利12项,作为项目负责人获省级项目2项、其他纵向项目3项,作为子课题负责人获批市级项目2项,主持科研成果转化项目4项(总金额1600万元);协助举办/参加国内外学术会议8次,完成了本项目的相关任务。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
城市轨道交通车站火灾情况下客流疏散能力评价
基于细粒度词表示的命名实体识别研究
服务经济时代新动能将由技术和服务共同驱动
钠离子电池层状过渡金属氧化物正极材料的储能机制及稳定性研究
钠基过渡金属氧化物作为储钠正极材料的研究
基于盐湖锂资源可控制备层状过渡金属氧化物储钠正极材料的研究
锰基锌离子电池正极材料的结构调控及储锌机制原位研究