Fiber Reinforced Polymer/Plastic (FRP) composites have been widely used in large-scale structures, such as aircraft, spacecraft, wind turbine blades, etc. and their application fields keep increasing. The methods of fatigue evaluation and residual life prediction based on Non-destructive Testing (NDT) are very important for the safety of the composite structures in service. In this project, a new method of fatigue evaluation and residual life prediction based on velocity degradation of ultrasonic waves is proposed and the fundamental issues in realization and implementation of this method are to be studied. First, based on the former preliminary work by the applicant, the velocity degradation of different ultrasonic wave modes in FRP composite plate-like structures with different types of lamination under different types of cyclic loads will be investigated experimentally and the relationship between the pattern of wave velocity degradation and the type of cyclic loads will also be studied. Second, the mechanism and types of micro-scale damage in different types of composite materials under different types of load will be analyzed and a wave velocity degradation model are to be established based on the mechanism of damage and the theory of damage mechanics. Third, a method to estimate the failure criterion of wave velocity anda statistical model ofresidual life prediction are to be establishedbased on the wave velocity degradation model using the Bayesian theory, taking the uncertainties caused by the factors such as the measurement error, variation of material properties, etc. into consideration. The influence of temperature and the state of stress during measurement on the ultrasonic wave velocity will also be studied and a method of compensation for the residual life prediction model to achieve higher accuracy is to be proposed. This research will serve as the theoreticaland methodological foundation for the future application of laser ultrasonic technique-basedapproach for fatigue evaluation and residuallife predictionof FRP compositestructures.
纤维增强复合材料已广泛应用于航空航天飞行器、风电叶片等大型结构,而且应用领域日益广泛。通过无损检测实现复合材料结构的疲劳状态评定以及寿命预测,对保证复合材料结构的服役安全性具有重要的意义。本项目提出基于波速退化实现疲劳状态评定和寿命预测的方法,并对该方法的实现中存在的关键基础问题开展研究。在前期研究的基础上,通过疲劳控制实验的方法探索在单轴以及多轴周期载荷下层合板中不同模态的超声波波速的退化规律,以及载荷形式对波速退化的影响规律;分析板结构中疲劳损伤积累和波速退化现象之间的相互关系,从复合材料的损伤机理出发,建立超声波波速退化的理论模型;在波速退化模型的基础上,考虑随机因素的影响,建立基于波速的失效准则以及基于贝叶斯推断的剩余寿命预测模型;研究检测时的环境温度以及应力状态对波速的影响规律,提出相应的预测模型修正方法,进一步提高预测精度,为实现该寿命预测方法的工程应用奠定理论基础。
纤维增强复合材料已广泛应用于航空航天飞行器、风电叶片等大型结构,而且应用领域日益广泛。通过无损检测实现复合材料结构的疲劳状态评定以及寿命预测,对保证复合材料结构的服役安全性具有重要的意义。本项目在前期采用导波波速表征复合材料疲劳损伤的工作基础之上,针对玻璃纤维和碳纤维层合板,进一步开展了常幅单轴拉-拉疲劳试验和多轴拉-扭疲劳试验,利用激光超声系统周期采集了疲劳试件中的导波传播数据;获取了周期载荷作用下复合材料结构中导波传播波速的演化数据,探究了周期载荷作用下纤维增强复合材料结构的疲劳损伤和导波特征演化现象,揭示了复合材料中由于疲劳损伤累积而导致的波速和模态转换现象的机理;提出了基于损伤机理的刚度/波速退化模型,分析了纤维断裂、基体裂纹和层间分层三种主要损伤对刚度/波速退化的影响,结合试验数据得到了较为一致的预测结果;探索了采用新型数据驱动人工智能模型描述刚度退化行为的可行性,实现了基于非监督深度学习模型的导波数据自动处理和退化模型的自动生成;开发了概率驱动的剩余寿命预测准则和方法,显著提升了剩余寿命预测的稳定性和准确度;搭建了高速激光超声测试系统,分析了不同测量环境对导波数据采集的影响因素。本项目的研究成果证实了采用导波数据表征复合材料疲劳状态的可行性,实现了原位复合材料结构剩余寿命的预测,为后续实现复杂载荷作用下的复合材料结构疲劳状态表征和寿命预测提供了坚实的基础。共发表26篇论文,其中SCI收录20篇(10篇第一标注),EI收录2篇,核心收录1篇,会议论文2篇;申请国家发明专利7项,授权4项;共培养和正在培养14名学生,其中博士生5名,硕士9名。培养青年教师一名,并获得江苏省优秀青年项目资助。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
基于导波波场测量的复合材料疲劳寿命预测方法研究
基于超声导波的复合材料贮箱状态监测与寿命评估技术
基于缺口应力的超声冲击处理焊接钢节点疲劳寿命提高机理及预测方法研究
基于形貌分析的风机叶片复合材料损伤演化机理及疲劳寿命预测方法研究