According to the actual demand of high-altitude aircraft pressure simulation, vacuum servo system is regarded as research object and the control performance in the low absolute pressure range is as a research emphasis in the project. The new control structures of vacuum servo system are proposed to get satisfying performance. Based on the research of pneumatic servo control technology in Huazhong University of Science and Technology for many years, the key technology applying in the vacuum servo control system should be researched. Firstly, the foundation theories and critical technologies to the development of the vacuum servo system will be investigated, such as the inflation or deflation thermodynamic process under the state of vacuum in a chamber, and the pipeline pressure dynamic characteristics. Secondly, based on the analysis of difficulties in current vacuum control system, two kinds of control scheme of vacuum servo system are proposed, which are multi-source multi-stage vacuum servo coupling control method and separate control method of inflation and deflation. Further, it should be deeply studied on regulatory mechanism, method of system design, nonlinearity control strategy, as well as parameters optimization and decoupling method. Finally, the prototype of high precision and high response pressure simulation device (absolute pressure 1.17-110kPa, frequency 2Hz, amplitude 0.2kPa, amplitude error ≤5%, phase error ≤5º) will be developed. The research focuses on the optimization design of vacuum servo system, nonlinear control strategy and parameters optimization and decoupling method of the prototype at extremely low pressure, and intended to acquire achievement in design theory and method of the vacuum servo system to resolve the problem of semi-physical flight height simulation of high-altitude aircraft, and meet the requirement of developing pneumatic servo control technology and aerospace equipment.
以高空飞行器气压模拟实际需求为切入点,以负压伺服系统为研究对象,以低压区间的系统性能为研究重点,提出新型负压伺服系统控制结构,以实现高精度、高响应负压伺服控制。在华中科技大学多年进行气压控制研究的基础上,首先对负压状态下容腔充抽气热力学过程,管路压力动态特性等基础性能进行研究。在此基础上,分析现有的负压伺服控制方法存在的问题,提出多负压源多级容腔耦合控制和被控容腔充抽气独立控制两种新的负压伺服控制方案,深入研究新型控制方式所涉及的调节机制、系统设计方法、非线性控制策略以及参数优化及解耦等科学问题,最终研制出满足某高空飞行器气压模拟装置的原理样机(绝压1.17-110kPa,频率2Hz,幅值0.2kPa,幅值比≤5%,相位差≤5º)。项目旨在负压伺服系统的设计理论和方法方面取得一定成果,解决我国高空飞行器飞行高度半实物仿真的难题,以适应气压伺服技术和我国航空航天装备技术发展的需要。
高空飞行器飞行高度半实物仿真将真实飞行气压环境引入飞行器研制过程中,可以有效缩短研制周期、降低研制成本。一些高空飞行器要求达到30km的飞行高度,对应的绝对压力为1.17kPa,这使得采用气压伺服控制技术产生压力更低、响应更快的气压模拟信号研究成为一种迫切需求。. 项目研究以高空飞行器气压模拟需求为切入点,以压力范围1~110kPa的负压伺服系统为研究对象,以1~10kPa低压力区间的系统性能为研究重点,以实现高精度、高动态负压伺服控制为最终目标,主要开展了以下5个方面的研究工作。(1)负压伺服系统负压容腔充抽气热力学过程、管路压力响应特性等基础性能研究;(2)多负压源多级容腔耦合控制和充抽气独立控制两种控制结构设计方法研究;(3)高动态、高精度负压伺服系统非线性控制策略及实验研究;(4)基于高速开关阀和变容积方法的负压伺服系统控制结构的拓展研究;(5)面向高空飞行器气压模拟装置的原理样机研制。在此基础上,成功研制出应用于某高空飞行器气压模拟装置的高空高速气压模拟系统样机(绝对压力1.17~110kPa,响应频率2Hz,幅值比误差≤5%,相位差≤5°)。. 项目相关研究成果已发表论文6篇,已投稿论文2篇,其中被SCI收录4篇,EI收录1篇;授权发明专利4项,正在申请发明专利2项;举办国际学术会议1次,做大会特邀报告1次;获得国家技术发明二等奖1项;培养研究生7名,其中已毕业4名。项目在负压伺服系统设计理论和方法方面取得了一定的成果,拓展了气动比例/伺服技术的应用领域,不仅对气压控制技术的发展具有重要的理论意义,而且解决了我国高空飞行器半实物仿真的难题,具有重要的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
基于重复控制的直线伺服系统研究
面向植入式医疗设备的无线能量传输系统研究
高超声速飞行器用模块化集成式容错伺服系统研究
空天飞行器用新原理高动态容错电动直驱伺服系统研究