Oscillation behavior exists in glycerol metabolism to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae during long-term continuous cultivations. In this study, the oscillation behavior depending on interaction among molecules and metabolic regulation is investigated from the levels of transcription, gene expression, enzymes and metabolites. Focusing on the gene regulation of 3-hydroxypropionaldehyde (3-HPA) to dha regulon and oscillation behavior, key gene inducing oscillation behavior, critical concentration and lag time are indicated and confirmed. Combining with enzyme-catalytic kinetics and gene regulation kinetics, dynamic behavior of metabolic pathways analysis, oscillation mechanisms and the strategy of control and utilization of oscillation behavior are expounded. The main technology including: firstly, the discrepancy of gene transcription level for metabolic pathways is analyzed by digital gene expression profiling (DGE). Secondly, data mining is realized by regulatory sequence analysis tools (RSAT) and multiple expectation maximization for motif elicitation (MEME), and key genes are confirmed again by real-time PCR. Thirdly, the method for separation and quantification of the key enzymes is analyzed by the technology of microdialysis/microultrafiltration-HPLC. The study of gene regulation of 3-HPA to dha regulon and oscillation behavior of glycerol metaolism by K. pneumoniae is benefit to impressiong on physiology and metabolism of microorganism. The results presented in this study may be used as guidelines for construction of genetically engineered bacterial strains, controlling and optimization of fermentation process, design for dynamic biology reactor.
本项目针对K. pneumoniae生物转化甘油生产1,3-丙二醇过程中出现的振荡现象,从转录、基因表达、酶、代谢物水平研究振荡行为产生的分子作用机制和代谢调控机理。重点研究3-HPA对dha调控子的基因调控机制和系统振荡行为的影响,确定诱发振荡的关键基因、临界浓度及滞后时间;构建动态系统的酶催化和基因调控动力学,研究代谢途径动态变化规律,揭示振荡行为机理,提出控制和利用振荡的策略。所采用的主要技术手段包括:(1)利用数字表达谱检测相关代谢途径基因转录水平的差异;(2)利用RSAT和MEME生物信息学软件深入挖掘差异表达谱,采用Real-time PCR验证关键基因;(3)利用微透析/微超滤-液相色谱联用技术建立关键酶分离与定量方法。dha调控子的基因调控机制与甘油代谢振荡机理的揭示,将有助于加深对细胞代谢生理学的认识,为基因工程菌构建、发酵优化控制和动态反应器的设计提供指导。
本项目针对K. pneumoniae生物转化甘油生产1,3-丙二醇过程中出现的振荡现象,从转录、基因表达、代谢物水平研究振荡行为产生的分子作用机制和代谢调控机理。构建动态系统的酶催化和基因调控动力学,研究代谢途径动态变化规律,揭示振荡行为机理。.首先,从代谢物水平研究高浓度甘油诱导K .peneumoniae连续发酵振荡行为。发酵体系中甘油浓度由20 g/L提高到100 g/L后,细胞生长受到抑制,进入滞后期。此时毒性中间代谢物3-羟基丙醛(3-HPA)升高至0.63 g/L后又降至0.18 g/L,经过20 h过渡期,各代谢物CO2、1,3-丙二醇、乙酸、3-HPA、甲酸、琥珀酸等进入振荡期,振荡周期为6.5-7.5 h,振荡期能持续140 h以上。其中3-HPA振荡周期较短,为3-4 h,振荡期浓度变化为0.13-0.78 g/L。振荡期与平稳期代谢通量分析表明,振荡时甘油更多地流向1,3-丙二醇和乙酸通路,振荡时可以获得更高的底物转化率和产物比生成速率,且平稳期时无毒性3-HPA的积累。代谢物水平上高底物甘油诱发振荡行为分析结果表明,3-HPA的积累可能是诱发振荡的关键因素。.其次,从转录水平研究高浓度甘油诱发K. peneumoniae连续发酵振荡行为,分析稳定和振荡条件下K. peneumoniae基因表达差异。分别选取振荡周期中1,3-PD浓度最高点(V1)和最低点(V2)以及平稳期(V3,100 g/L甘油连续发酵)进行转录组测序。使用Bioconductor的软件包DEseq对振荡期和平稳期的差异表达基因进行比较, V1相对于V3的下调基因为2561,V2相对于V3的下调基因为2224。其中V1相对于V3的转录组测序分析表明,编码1,3-丙二醇氧化还原酶(PDOR)基因dhaT以及编码二羟基丙酮的激酶(DHAK)的基因dhaK均显著下调,从而导致3-HPA积累,诱发振荡行为产生。 .最后,针对1,3-丙二醇发酵过程设计了基于FT-NIR在线近红外光谱分析技术的生物量在线监测实验平台,通过对实时采集光谱预处理以及敏感光谱段分析,应用偏最小二乘算法,建立了1,3-丙二醇发酵过程生物量变化的动态预测模型,实现了对生物量的有效在线监测。结合发酵动力学和近红外光谱技术,可以在线监测1,3-丙二醇的生成浓度,为发酵行业的在线自动智能化控制提供指导依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
微藻甘油三酯代谢的表观遗传调控机制研究
基于构效关系揭示甘油磷脂型DHA的吸收利用机制
反义lncRNA-AS-nnmt-plzf调控NNMT和PLZF基因转录介导肝脏甘油三酯代谢紊乱的机制研究
智能调控肺炎克雷伯氏菌甘油代谢的群体感应工程