This research project investigates the problem of nonlinear measurement based cooperative formation control which guarantees global convergence. The central problem is how to transform this nonlinear control problem into a linear control problem and realize global stability. The research project mainly includes the following aspects: nonlinear measurement based cooperative localization for moving multi-agent networks; nonlinear measurement based cooperative formation control by integrating cooperative localization and formation control; performance analysis and optimization for nonlinear measurement based cooperative formation control; experimental research on nonlinear measurement based cooperative formation control for multi-agent networks . The research goal is to propose a control framework based on the integrated design of cooperative localization and formation control, which provides a new method and a new idea for cooperative formation control for moving multi-agent networks, and strive to achieve cooperative formation and optimization with global convergence under nonlinear measurement conditions . The research project is not only important in the promotion of multi-agent cooperative formation control in practical applications, but also valuable for perfecting the theoretical research on multi-agent collaborative control.
本项目主要研究如何在运动多智能体网络中利用非线性测量信息实现可以保证全局收敛的协同编队控制,其核心问题是如何将这个非线性控制问题转换为一个线性控制问题,进而保证系统的全局收敛性。具体内容包括:面向运动多智能体网络基于非线性测量信息的协同定位;采用协同定位与编队控制一体化设计的基于非线性测量的协同编队控制;基于非线性测量的协同编队控制的性能分析与优化;基于非线性测量的协同编队控制的实验研究。本项目的研究目标提出一种基于协同定位与编队控制一体化设计的控制框架,为运动多智能体网络提供协同编队控制的新方法和新思路,力求在非线性测量条件下实现具有全局收敛特性的协同编队控制与优化。本项目的研究不仅对多智能体网络协同编队控制在实际应用中的推广具有重要意义,也对完善和促进多智能体协调控制的理论研究有着重要价值。
目前基于非线性测量的协同编队控制问题尚无系统性的解决方案,克服测量信息的非线性属性依旧是解决更具一般性的协同编队控制问题的一大难点。本项目以多智能体网络为研究对象,通过构建一个基于协同定位与编队控制一体化设计的控制框架来实现多智能体网络在二维平面和三维空间中基于非线性测量信息的分布式自主编队控制及优化。主要研究内容:1)基于非线性测量的多智能体网络协同定位;2)基于非线性约束的多智能体网络编队控制;3)面向多智能体网络一致性的鲁棒性分析和性能优化。在项目执行期间,总共发表SCI,EI收录文章10篇,其中包含 Automatica 等控制领域重要学术期刊,申请/授权国家发明专利10项,获批浙江省自然科学二等奖,完成了项目在论文、专利、人才培养等方面的预期目标。该项目融合了图论、博弈论、控制论等多学科交叉理论,丰富了现有多智能体网络协同定位和编队控制的理论研究方法,完善了多智能体网络协调控制的理论体系,促进了其在实际场景中的应用推广。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
基于马氏跳变的非线性多智能体的网络随机建模与协同控制
基于有向刚性图论的多智能体编队控制研究
基于人机协作的异质多智能体网络的协同控制
一类欠驱动多智能体编队系统非线性建模与鲁棒稳定控制机理研究