Developing highly active and stable electrocatalysts for cathode oxygen reduction reaction (ORR) is main factor to promote further commercialization of proton exchange membrane fuel cell (PEMFC). Recently, transition metal and nitrogen-doped carbon materials (M-N/C, with M = Fe, Co) have became promising alternatives to Pt-based precious metal ORR catalysts. For these non-precious ORR catalysts, it is considerably accepted that further improvement of catalytic activity and stability as well as the nature of catalytic sites are three important aspects. Thereinto, the understanding of the nature of active sites and reaction mechanisms is crucial to guide the design of this type of catalysts. In this project, hybrids of ZnFe (ZnCo) LDH and carbon materials will be selected as construction units. Through suitable polymer coating technique followed an controllable annealing process, ORR model electrocatalysts with molecular Fe(Co)NxCy active sites will obtained. More importantly, by characterizing the catalyst under both ex situ and operando conditions using XAS techniques, we will reveal the structural transformation of active sites under working conditions. Through analysis of XAS results combined with density functional theory calculations, we will attempt to gain deep insight into reaction and inactivation mechanisms. We believe that this project will provide a basis for the study of other electrocatalytic reactions (HER, OER, CO2 reduction, etc.).
研究发展高效低成本的电化学氧气还原反应(ORR)催化剂,对于进一步推进质子交换膜燃料电池商业化至关重要。当前,含有过渡金属Fe、Co的氮掺杂碳材料有望替代商用的Pt基贵金属材料;催化活性和稳定性的进一步提高以及催化活性位点的本质揭示是这类催化剂研究的三大问题。其中,催化活性位的本质揭示由于可阐明催化机理以及为这类催化剂的设计提供理论指导,成为当前研究的热点。本项目拟采用ZnFe和ZnCo二维层状双氢氧化物(LDH)与碳的杂化材料作为构建单元,通过合适的碳包覆工艺,获得具有分子型Fe(Co)NxCy催化活性中心的“模型”催化剂;搭建原位电化学反应装置,利用同步辐射吸收谱,原位揭示催化剂中相关组分原子结构的动态变化,以同步辐射分析结果为依据,结合第一性原理计算,构建合适的结构模型,探明催化和失效机理,并且为其它电催化剂(HER、OER、CO2还原等)的研究提供借鉴作用。
电化学氧气还原反应(ORR)是燃料电池、金属空气电池等清洁能源转换装置中的核心反应,开发高效低成本ORR电催化剂,并研究其催化机理对于提升器件能量转换效率极其重要。含有过渡金属Fe、Co的氮掺杂碳材料有望替代商用的Pt基贵金属ORR催化剂。催化活性和稳定性的进一步提高以及催化活性位点的本质揭示是这类催化剂研究的关键。在本项目的资助下,我们聚焦于分子型活性位的Fe(Co)-N-C氧气还原电催化剂的设计、制备和催化性能研究,重点结合同步辐射表征,解析催化剂精细结构。本项目取得的研究成果总结如下:. 发展了原子限域反应制备具有分子型活性位的Fe(Co、Cu)-N-C氧气还原电催化剂的新方法:用ZnFe、ZnCo和ZnCu层状氢氧化物(LDH)与碳杂化材料的优化设计与碳包覆工艺,获得了合适的LDH制备方法,在碳载体上获得高度均匀分散的LDH材料,同时实现LDH中过渡金属含量的大范围可调;以上述获得的杂化材料为模板,进行碳包覆和高温退火,获得含有Fe、Co、Cu的氮掺杂碳材料。项目通过层间限域热解,阻断原子纵向扩散路径,增大横向扩散阻力,制备了缺陷碳限域Co2+、Fe3+和Cu2+单原子的结构,获得了高的氧气还原催化活性和稳定性。基于同步辐射吸收谱近边和远边结构的拟合分析,辨认出了活性中心的局域电子和几何结构,并与催化活性相关联,揭示了氧气四电子还原机理。. 项目在Accounts of chemical research, Materials today, Advanced materials (2篇), Advanced energy materials (2篇), Acs nano, Acs energy letters (2篇),Small (2篇)等权威期刊发表标注有本课题资助的论文16篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
硬件木马:关键问题研究进展及新动向
滚动直线导轨副静刚度试验装置设计
双吸离心泵压力脉动特性数值模拟及试验研究
空气电晕放电发展过程的特征发射光谱分析与放电识别
基于生物质的新型氧还原反应电催化剂Fe(Co)-N-C的合成与催化活性
碳酸根基双位点型催化剂的构筑及其电还原CO2的机制
通过分子设计构建双核活性位的高性能非铂氧还原催化剂研究
超低铂氧还原电催化剂活性和稳定性调控的同步辐射XAFS研究