In an occasional soil disturbance event, we observed that N2O emission flux increased 113-fold, and referred that soil disturbance deterred N2O consumption processes. If this hypothesis is true, then the soil N2O consumption potential is amazing for the humid subtropical forests, and by which we can explain the reasons of the negative N2O fluxes. N2O reductase (N2OR) and nitrogenase enzyme can consume N2O, but the latter may be more dominant in acidic soils . The possibility has been speculated of direct reduction of N2O to NH3 by nitrogenase in the light of enzyme kinetics and thermodynamics. The traditional view is that N2O and N2 products of denitrification must first enter the atmosphere, and then through nitrogen fixation by nitrogen-fixing microbes re-enter the soil for cycling. We have questioned the statement and established our new assumption of closed loop of these products directly within the soils. So, our research objective here is to explore the causes of soil negative N2O fluxes related to soil nitrogen fixation process for forest soils in the region, by the combined use of acetylene reduced to ethylene method, acetylene inhibition of N2OR , 15N2 and 15N2O difference method, 15NO isotope method and molecular biological methods by which can be assayed the abundance and community diversity of the functional genes (nifH, nosZ) coding nitrogenase enzyme and N2OR, for in-depth understanding of the mechanism of forest soil N2O sources and sinks.
我们实验中一次偶然土壤扰动观察到N2O排放通量增大113倍,推断这是扰动抑制了土壤N2O消耗过程所致。如果该假设成立,那么湿润亚热带森林土壤N2O的消耗能力是惊人的,并能解释N2O负通量的原因。N2O还原酶(N2OR)和固氮酶都可以消耗N2O,但后者在酸性土壤可能更占优势。从固氮酶酶促动力学和热力学角度人们推测土壤中可能存在N2O被直接还原为NH3的过程。传统认为反硝化产物N2O和N2必须先进入大气,然后再通过固氮作用,重新进入土壤循环,我们对此提出质疑并建立了这些产物直接在土壤内部实现闭合循环的假设。研究目的是,以该地区森林土壤为研究对象,使用乙炔还原为乙烯法、乙炔抑制N2OR法、15N2和15N2O差异法、15NO同位素法以及检测固氮酶和N2OR功能基因(nifH、nosZ)的丰度和群落多样性,来探讨土壤N2O负通量产生的原因及与土壤固氮过程的关联性,以深入理解森林土壤N2O源汇机制。
在土壤N2O排放观测中频繁出现负通量,说明N2O消耗过程存在的普遍性。N2O还原酶(Nos)介导的反硝化过程最后一步被认为是唯一的N2O消耗过程,但N2O产生过程的多样性必将造成N2O还原过程的多样性,但对这些还原过程还缺乏深入理解;另外固氮酶也具有N2O还原潜力,但在土壤中的还原过程仍不清楚。为此,我们以湿润中亚热带针叶(JCL)、阔叶(JCF、JCC、WCC)森林土壤为对象,多种方法相结合,测定Nos酶活性和固氮酶活性;量化硝化NN、异养反硝化HD、硝化细菌反硝化ND、硝化耦合反硝NCD途径对土壤N2O产生的贡献;量化N2O还原为N2过程;量化HD与ND在N2产生中贡献;检验土壤可能存在的N2O还原途径及土壤中氮素循环的“闭合性”。.主要结果如下:.(1)用C2H2抑制法测得土壤Nos酶活性26.56-85.46 ngN g-1h-1;用15NO3法测得Nos酶活性在0-108±73.18ngNg-1h-1之间;方法之间具有相关性。.(2)用C2H2还原法测定固氮酶活性在0.10-0.436nmol C2H4g-1h-1,用15N2法测定固氮酶活性在0.03-0.15nmolN2g-1h-1。转换系数(R值),好氧条件下在0.52-3.93,厌氧条件下R值范围在4.62-7.51,说明R值不是变化的。.(3)厌氧条件下,HD和ND是土壤N2O产生的主导途径(贡献率40%,39%),NN和 NCD对N2O产生的贡献较低(11%、10%);有氧条件下,HD仍是土壤N2O产生的主要贡献者(49%),但ND的贡献率大幅度下降(14%),NN、NCD的贡献率较低(21%和16%)。.(4)土壤的N2O还原分馏因子(ηred15Nsp)在完全厌氧条件下较稳定(平均12%),低氧环境下土壤的N2O同位素特征δ15Nsp值都随着培养时间的延长而增大。土壤主要通过反硝化作用实现N2O的产生与还原,氧气浓度越高,N2O的还原能力越强。硝酸盐异化还原为铵(DNRA)在低氧浓度下也发生N2O的还原,但贡献较小。.(5)ND对N2产生的贡献率(98%)显著大于HD(1.6%)。氧气浓度越大,HD越强。.(6)在本实验研究条件下,只存在N2O异化还原成N2再进一步同化还原成NH3的N2O吸收途径,不存在N2O→N2→NH4+和N2O→NH4+同化还原途径;这也说明了土壤中氮循环的“闭环性”
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
针灸治疗胃食管反流病的研究进展
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
全球变暖是否会削弱湿润亚热带森林土壤的保氮能力?
真菌是否是中亚热带森林土壤N2O产生的主要贡献者?
增温是否导致中亚热带森林土壤“微生物碳泵”失效?
氮磷添加对南亚热带森林土壤CO2、CH4和N2O通量的影响