NOx and PCDD/Fs are typical atmosphere pollutants emitted through indusdrial fume, which do harm to human health and ecological environment seriously.Therefore, nowadays how to control and remove the NOx and PCDD/Fs in indusdrial exhaust gases effectively is a great subject in environmental field. The project in application focuses on the aim of promoting the efficiency of simultaneous removal of NOx and PCDD/Fs through photocatalysis. (bcc, rh)-In2O3/ZnFe2O4 Multi-Junctions will be fabricated on the molecular level to realize the enhancement of photoinduced charge carriers separation and their transfer efficiency, which then leads to the further improvement in the photocatalytic removal efficiency of NOx and PCDD/Fs. Furthermore,combined with various in-situ spectroscopies,the use of isotope labelling molecule-probing techniques, will be employed to reveal the insights of the reaction mechanisms, which will provide in-depth understanding on the processes of photo-induced charges separation/transfer/recombination as well as the important evidences on microscopic mehcanisms about the adsorption /decomposition /desorption processes of pollutant molecues at surface-interface on the molecular level with important academic reference value. The executation of the project will advance the people's knowledge about the photocatalytic decomposition of complex pollutant moleculars under complicated conditions, and thus has important scientifc significance on the ecological risk management and pollution prevention & remedy of such chemicals.
工业排放烟气中的氮氧化物(NOx)及二噁英( PCDD/Fs)作为重要的大气污染物,对人类生态环境构成严重影响。因此,如何有效控制去除烟气中NOx和PCDD/Fs是当今环境领域的重大课题。本申请项目重点以提高同时脱除PCDD/Fs 和NOx光催化效率为研究目标,通在分子水平上构建(bcc, rh)-In2O3/ZnFe2O4 "多重微结"来实现光生载流子的分离和迁移效率的提高,从而促进光催化NOx和PCDD/Fs效率的进一步提高。在此基础上,将采用同位素标记分子探针技术结合多种原位谱学手段深入研究催化反应机理,这对于在分子水平上深入理解光致电荷分离/迁移/复合过程以及污染物分子在催化剂表面-界面的吸附/分解/脱附微观过程机制具有重要的学术参考价值。本项目的实施将深化人们对复合污染物分子在复杂反应条件下光催化分解特性的进一步认识,对该类化合物的生态风险管理和污染防治具有重要的科学意义。
有效控制和去除烟气中PCDD/Fs和NOx是当今环境领域的重大课题。本项目构建不同结构形态(bcc, rh)-In2O3/ZnFe2O4“多重微结”,利用时间分辨表面光谱等瞬态谱学技术分析“多重微结”光致表面-界面电荷产生及迁移的瞬态动力学过程,揭示多重微结体系中光诱导电荷分离、迁移输运及氧化还原特性和基本规律。探索在(bcc, rh)-In2O3/ZnFe2O4“多重微结”气/固微界面上PCDD/Fs和NOx污染物分子光催化转化降解反应机理,建立光致催化反应产物的形成与“多重微结”结构形态及反应影响因素的相关关系。课题在以下三个方面取得了重要进展:(1)制备出不同结构形态(bcc, rh)-In2O3/ZnFe2O4“多重微结”催化材料以及系列类尖晶石结构材料,实现光生载流子的分离和迁移效率的提高,促进了光催化NOx和PCDD/Fs效率的进一步提高;(2)揭示出(bcc, rh)-In2O3/ZnFe2O4“多重微结”催化材料的光致表面-界面电荷迁移特性;(3)阐明了典型PCDD/Fs和NOx污染物分子在(bcc, rh)-In2O3/ZnFe2O4“多重微结”气/固微界面光催化转化降解机理及影响规律。所得结果可为光催化技术应用于环境污染物降解和太阳能利用提供理论依据。研究成果在相关重要国际期刊发表SCI收录论文20篇,申请国家发明专利3项,授权专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
高湿烟气PCDD/Fs净化体系中同类物去除率差异的机理分析与模型研究
双塔串联生物法烟气同时脱除SO2、NOx、Hg的探索研究
垃圾焚烧烟气中NOx的低温脱除研究
液相催化氧化-微生物法同时脱除烟气中SO2和NOx应用基础研究