Dichloromethane(DCM)dechlorination has significant science and application value for efficient control and waste recycling of chloroorganic pollutants. Enhanced enzyme catalysis by electrochemistry for efficient DCM dechlorination has not been reported, and its reaction pathway and enhanced mechanism need to be further investigated. This project is designed to analyze its active site, coenzyme binding domain and substrate binding site by investigating the structure-activity relationship of DCM dehalogenase; to analyze DCM electrochemical enzyme catalysis process and dechlorination steps by characterizing the material transformation relation; to illustrate the mechanism of enzyme catalytic activity and coenzyme regeneration enhanced by electron donor from cathode as well as to reveal the enhanced molecular mechanism by studying the effect of electrochemistry on electron density of catalytic group in dechlorination enzyme; to determine the effects of polarized conditions and processing parameters on enzyme activity and reaction activation energy as well as DCM dechlorination current efficiency by investigating the electrochemically-enhanced enzyme catalytic dechlorination reaction kinetics of DCM. This project provides an original solution for efficient dechlorination and recycling of DCM as well as promotes interdisciplinary integration of chemistry, biology, material and environmental sciences.
二氯甲烷(DCM)脱氯对含氯有机污染物有效控制与废物资源化具有重要的科学意义和应用价值。电化学强化酶催化应用于DCM高效脱氯国内外尚属空白,其反应途径和强化机理亟待深入研究。本项目旨在研究DCM脱氯酶的构效关系,解析脱氯酶的催化活性中心、辅酶结合域和底物结合位点;表征物质转化关系,解析DCM电化学-酶催化反应过程与脱氯步骤;研究电化学对脱氯酶催化基团解离及其电子云密度的影响规律,揭示电子传递对酶催化活性与辅酶再生的强化机制,阐明其强化分子机理;考察电化学强化酶催化DCM脱氯反应动力学,解析极化条件对酶催化活性、脱氯反应活化能及电流效率的影响规律。本项目不仅为DCM高效脱氯与资源化提供一条崭新的途径,也可促进化学、生物、材料和环境等学科的交叉融合,具有重要的学术意义。
二氯甲烷(DCM)脱氯对含氯有机污染物有效控制与废物资源化具有重要的科学意义和应用价值。电化学强化酶催化应用于DCM高效脱氯国内外尚属空白,其反应途径和强化机理亟待深入研究。本项目旨在研究DCM脱氯酶的构效关系,解析脱氯酶的催化活性中心、辅酶结合域和底物结合位点;表征物质转化关系,解析DCM电化学-酶催化反应过程与脱氯步骤;研究电化学对脱氯酶催化基团解离及其电子云密度的影响规律,揭示电子传递对酶催化活性与辅酶再生的强化机制,阐明其强化分子机理;考察电化学强化酶催化DCM脱氯反应动力学,解析极化条件对酶催化活性、脱氯反应活化能及电流效率的影响规律。本项目不仅为DCM高效脱氯与资源化提供一条崭新的途径,也可促进化学、生物、材料和环境等学科的交叉融合,具有重要的学术意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
格雷类药物治疗冠心病疗效的网状Meta分析
UV-生物净化二氯甲烷废气的耦合机理研究
纳米结构的复合催化电极设计及电化学催化还原脱氯研究
稀土盐-氧化物复合催化剂的构建及高湿环境催化氧化二氯甲烷的抗氯机制研究
基于脱卤呼吸电子传递过程的多氯联苯还原脱氯生物强化机理研究