共形几何中的非局部偏微分方程

基本信息
批准号:11501034
项目类别:青年科学基金项目
资助金额:17.00
负责人:熊金钢
学科分类:
依托单位:北京师范大学
批准年份:2015
结题年份:2018
起止时间:2016-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:宋乾乾,王博,曹絮,彭志鹏
关键词:
C^0估计爆破分析共形几何几何热流非局部椭圆偏微分方程
结项摘要

The conformal mapping is one of the most important topics in complex analysis of one variable, and has been used widely in the areas of hydromechanics, aerodynamics, elastomechanics, electromagnetic field and thermal field theory and etc. The classical Riemann mapping theorem asserts that every simply connected domain in the complex plane, whose boundary is more than one point, is conformal to the disk. This project considers a generalization of Riemann mapping theorem: The constant Q-curvature problem at the asymptotical boundaries of Poincaré-Einstein manifolds. This problem is equivalent to solving a nonlocal partial differential equation (PDE). If Q-curvature is coincident to mean curvature, Escobar [Ann Math 92] and a series of work of Professor F. Marques at Princeton gave a satisfactory anwer. Based on the applicant’s previous work on the Nirenberg problem, this project takes the classical theory of second order elliptic PDEs and parabolic PDEs into account, develops analysis tools for nonlocal PDEs, proposes a variational method to solve the constant Q-curvature problem, establishes a priori estimates by searching a geometry quantity, and proves the long time existence and convergence of the nonlocal heat flow.

共形映射是单复变函数论的最重要研究课题之一, 被广泛地应用于流体力学、空气动力学、弹性力学、电磁场与热场理论等领域. 著名的黎曼映射定理说, 复平面上任何一个边界不止一点的单连通的区域都共形于单位圆盘. 本项目考虑黎曼映射定理推广形式: Poincaré-Einstein 流形的渐近边界上的常 Q-曲率问题. 这个问题等价于求解非局部偏微分方程. 当Q-曲率为平均曲率时, Escobar [Ann Math 92]和美国Princeton 大学教授F. Maruqes一系列工作给出满意回答. 基于申请人在 Nirenberg 问题的研究工作, 本项目从二阶椭圆型或抛物型偏微分方程的经典理论出发, 对非局部偏微分方程发展分析工具, 拟采用变分法解决存在性, 寻找整体几何量用以建立先验估计, 证明非局部热流的长时间存在性和收敛性.

项目摘要

共形映射是单复变函数论的最重要研究课题之一, 被广泛地应用流体力学、空气动力学、弹性力学、电磁场与热场理论等领域. 著名的黎曼映射定理说, 复平面上任何一个边界不止一点的单连通的区域都共形于单位圆盘. 本项目考虑黎曼映射定理推广形式: Poincaré-Einstein 流形的渐近边界上的常 Q-曲率问题. 这个问题等价于求解非局部偏微分方程. 当Q-曲率为平均曲率时, Escobar [Ann Math 92]和美国Princeton 大学教授F. Maruqes一系列工作给出满意回答. 基于申请人在 Nirenberg 问题的研究工作, 本项目从二阶椭圆型或抛物型偏微分方程的经典理论出发, 对非局部偏微分方程发展分析工具, 采用变分法解决存在性, 寻找整体几何量用以建立先验估计, 证明非局部热流的长时间存在性和收敛性.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
3

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example

DOI:10.1016/j.eiar.2021.106623
发表时间:2021
4

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
5

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018

熊金钢的其他基金

相似国自然基金

1

共形几何中的偏微分方程探究

批准号:11701544
批准年份:2017
负责人:张宏
学科分类:A0306
资助金额:22.00
项目类别:青年科学基金项目
2

共形几何与液晶问题中的偏微分方程

批准号:11201223
批准年份:2012
负责人:陈学长
学科分类:A0306
资助金额:22.00
项目类别:青年科学基金项目
3

CR共形几何中的若干曲率流问题

批准号:11901546
批准年份:2019
负责人:王坤博
学科分类:A0109
资助金额:24.00
项目类别:青年科学基金项目
4

共形几何中的若干问题及其应用

批准号:10171090
批准年份:2001
负责人:尹永成
学科分类:A0204
资助金额:13.50
项目类别:面上项目