Wool fiber is honoured as 'breathing fiber', and woolen fabric exhibits an excellent heat retention and moisture absorption propertie. As a result, woolen fabric is popular with consumers. In this research, we will investigate the mechanism for heat and moisture transfer of woolen fabric by the influence of microstructure characteristic of wool fiber, and this research is based on the complex, multilevel structure of woolen fabric from microfibrils to fiber, to yarn,and finally to fabric. Since wool fiber is composed of multiscale fibrils, thus the woolen fabric constituted by wool fiber exhibits an multilevel construction as well. Fractal method will be imployed to express each level of inner structure in woolen fabric, and the geometric parameters of each level of inner structure in woolen fabric will be composited gradually to establish a multiscall heat and moisture tranfer model. This model is established based on the multilevel structure of woolen fabric, from the most microstructure (the nano scale structure of wool fiber) to the macroscope porous structure of the fabric. Such a model will reveal the mechanism for heat and moisture transfer of woolen fabric by the influence of microstructure characteristic of wool fiber. This research project would explain the essential reason for why wool fiber exhibits a fantastic heat retention and sweat discharging properties from the theoretic and experimental perspective, and this research will provide the theoretical and experimental basis for design and exploitation of bionics fibers and functional clothing material.
羊毛纤维被誉为"会呼吸的天然纤维",其织物具有卓越的保暖和吸湿排汗特性,从古至今始终受到世人的青睐。本课题基于羊毛织物具有原纤→纤维→纱线→织物的多层次化复杂结构,研究羊毛纤维微观结构对织物对毛织物热湿传导机理的影响机制。由于羊毛纤维内部存在复杂的多级原纤化结构,而其所缔造的羊毛纱线和织物也呈现出多层次化的结构特征,故本课题拟采用分形学的研究方法对羊毛织物内部的各层次结构进行表征,并将纤维、纱线、织物的内部几何结构参数逐级复合,建立从织物最微观结构(纤维中纳米尺度的原纤)出发拓展至其宏观多孔结构的多尺度热湿传导模型,从本质上揭示羊毛纤维微观结构对其织物的热湿传导性能的影响机制。本课题的研究,能够从理论和实验上阐释羊毛织物卓越保暖排汗特性的本质原因,为进一步设计和开发仿生结构纤维及功能性纺织服装材料提供理论依据和实验基础。
羊毛织物具有原纤→纤维→纱线→织物的多层次化复杂结构,是赋予毛织物卓越的保暖和吸湿排汗特性的根本原因。本研究从研究羊毛纤维的内部多尺度结构的分形特征出发,建立基于羊毛纤维分形特征的热湿传导模型,并通过对羊毛织物内部各层次结构进行表征,建立将纤维、纱线、织物的内部几何结构参数逐级复合的羊毛织物热湿传导模型,从本质上揭示羊毛纤维微观结构对其织物的热湿传导性能的影响机制。在此基础上,将仿生设计应用于织物组织结构设计中,设计并织造具有分形仿生结构的保暖型羊毛仿生机织物和导水型丙纶仿生机织物,并采用数值模拟的研究方法对其传质传热性能进行数值模拟研究。研究结果表明,羊毛纤维的内部结构分形维数接近黄金分割数1.618,羊毛纤维及织物内部分形结构使得纤维和织物的保暖及导湿性能呈几何级数增长,多尺度仿生结构能够显著提高织物的保暖性能和导水性能。本研究的研究成果,能够从理论和实验上阐释羊毛织物卓越保暖排汗特性的本质原因,为进一步设计和开发仿生结构纤维及功能性纺织服装材料提供理论依据和实验基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于多模态信息特征融合的犯罪预测算法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
北极熊毛的微观结构对其热传导性能影响的分数阶模型研究
角蛋白酶对羊毛角蛋白二硫键的酶解机理及其对羊毛结构与性能的影响和调控
孔隙微观结构特征对渗透率的影响研究
纤维织物中的热湿传递数值模拟及织物结构优化