Perovskite solar cells that achieved notable progress in recent years (the highest power conversion efficiency is 22.7%) have the potential to play an important role in future photovoltaic industry. The solid-state hole-transport materials has become an important part of the device. Until now, most of hole-transport materials are organic materials. However, these materials have many problems such as complicated preparation process, poor stability and low carrier mobility. The development of new hole-transport materials is therefore necessary to improve the power conversion efficiency and stability of perovskite solar cells. The copper-based sulfide nanomaterials have higher carrier mobility, stability and the adjustable band structure, which can provide a new approach to solve the above problems. The research content of this project will focus on the synthesis and application of high performance, high stability hole-transport materials based on copper-based quaternary sulfides, which mainly includes the following features: 1) Systematically synthesize and measure the physico-chemical parameters of a series of copper-based sulfide materials; 2) Design the structure of perovskite solar cells using the energy band theory based on the above characterization results; 3) Optimize the parameters of inorganic hole transport layer and the fabrication process of device; 4) Based on the theoretical design and experimental results, the transporting mechanism of inorganic hole-transport materials in the device will be studied in detail. In addition to obtain a series of high performance and stability copper-based quaternary sulfide hole-transport materials, a new approach for the design and synthesis of inorganic hole-transport material with suitable band structure and high carrier mobility also will be explored.
钙钛矿太阳电池的光电转换效率已达到22.7%,有望成为改变现有光伏产业格局的新型太阳电池。固态空穴传输材料的应用提升了电池的效率和稳定性。当前空穴传输材料多数为有机物,这类材料面临着如制备复杂、稳定性差及载流子迁移率低等问题。铜基硫化物材料的高载流子迁移率、稳定性及其能带随组分可调的特性为解决这些难题提供了新的途径。本申请项目拟以铜基四元硫化物为基础开发高性能、高稳定性的空穴传输材料,主要包含以下内容:1)多种硫化物材料的系统性制备与物化参数表征;2)基于表征结果,应用能带匹配理论对电池进行结构设计;3)优化无机空穴传输层结构与电池组装,抑制非材料物性影响,为此类材料的器件化应用优化制备方法;4)结合理论设计与实测结果,探究无机空穴传输材料在器件中的作用机理,在获得高性能、高稳定性铜基硫化物空穴材料的同时,为能带结构适宜、载流子迁移率高的无机空穴传输材料的设计开辟新的路径。
当前用于钙钛矿太阳能电池研究的空穴传输材料多为有机小分子或聚合物材料,这类材料面临着诸如合成复杂、价格昂贵、稳定性差及载流子迁移率低等问题,成为影响钙钛矿太阳能电池的商业化进程的难题之一。无机材料的高载流子迁移率、稳定性及其带隙可调的特性可使钙钛矿太阳能电池取得优异且稳定的性能。项目主要围绕铜基硫化物纳米晶的合成、表征与应用展开研究,获得了了多种高性能高稳定性的铜基四元硫化物钙钛矿太阳能电池空穴传输材料。具体而言,系统设计与探索了铜基四元硫化物纳米晶的制备方法,并通过此类方法制备出了多种高质量纳米晶及薄膜,同时表征了此类材料的能带结构及载流子迁移率等物化参数;结合材料的物性参数与能带结构理论,系统研究无机空穴传输层的制备参数对器件性能的影响,初步探究了材料的物化性质与其所组装器件性能之间的内在联系。. 与此同时,在项目执行过程,申请人立足于当前钙钛矿薄膜中物相最稳定的全无机钙钛矿太阳能电池的效率问题,探索了提升器件质量的方法,提升了太阳能电池的光电转换效率。此外,我们也利用本项目探索的合成方法,成果制备出了多种二元铁、钴、镍基硫属化合物及其复合材料,并深入研究了此类硫属化合物在电催化析氢、析氧反应中的应用。截至目前,共发表学术论文8篇,国内会议2篇。一些重要的研究成果发表在国际知名期刊上,其中包括中科院一区TOP期刊Chemical Engineering Journal(影响因子:13.273)、Solar RRL(影响因子:8.582)和Journal of Power Sources(影响因子:9.127)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
2D-3D复合钙钛矿电池中铜基硫化物空穴传输材料的性能调控研究
基于铜基空穴传输材料的低铅/非铅钙钛矿太阳能电池研究
钙钛矿太阳电池中具有界面钝化功能的小分子空穴传输材料的设计、合成及性能研究
钙钛矿太阳能电池铜铁矿型空穴传输材料的合成、结构及性能研究