The intermittency and fluctuation of wind power and the weak coupling between traditional wind turbine and power grid which are threatening the grid’s frequency stability, have become a bottleneck to wind power’s development. It is a foundation of frequency modulation control that steadying the wind turbines output power. This project creatively uses hydraulic energy storage system to improve the hydraulic wind turbine’s ability of frequency modulation. The hydraulic energy storage system for energy accumulation and regulation can stabilize the short and mid-term fluctuations of output power, improve the power quality. And furthermore, it can real-time balance the electric load’s fluctuation, improve the unit’s ability of frequency modulation..With the hydraulic wind turbine’s multi-field coupling output vibration mechanism, the transmission system dynamic identification and fuzzy adaptive control, the decoupling control of steady output and frequency modulation as this project’s main scientific problems, this project intends to carry out the following researches: (1) We will analyze the multi-field coupling power vibration mechanism of the wind turbine during the acquisition, transmission and manipulation of wind power. (2) We will explore the multivariable coordinate power control method for the unit to steady output. (3) We will study the dynamic and static frequency modulation characteristics of the wind turbine. Develop the unit’s energy control strategy. (4) We will combine the need of power grid, the frequency modulation characteristics of the wind turbine and the energy storage characteristics of energy storage system. Explore the wind turbine’s decoupling control method to realize steady output and frequency modulation at the same time. .The research results of this project will improve the hydraulic wind turbine’s power quality and frequency modulation ability, enhance the grid adaptability of the wind turbine. It will lay a foundation both in theory and technique for the large-scale wind turbines’ grid-connection.
风能的间歇性、波动性以及传统风电机组与电网的弱耦合性,影响电网频率稳定,成为制约风电发展的瓶颈。风电机组平稳输出是调频控制的基础,本项目创新性地采用液压储能系统提高液压型风力发电机组的调频能力。储能系统调控能量的储/放,抑制中、短期输出功率波动,提高电能质量,并进一步实时平衡电网负荷波动,提高调频能力。.项目以机组多场耦合输出波动机理、传动系统动态辨识与模糊自适应控制、平稳输出与调频解耦控制为主要科学问题,开展以下研究:(1)分析机组在捕获、传输、调控能量过程中的功率波动机理;(2)探索机组平稳输出功率的多变量协调控制策略;(3)分析机组动静态调频特性,探索机组能量调控策略;(4)根据电网调频要求,结合机组调频特性、储能系统能量储/放特点,探索机组同时实现平稳输出与调频的解耦控制方法。.项目研究成果将提高机组的电能质量和调频能力,增强机组电网适应性,为风电大规模并网装机奠定理论和技术基础。
风能的间歇性、波动性以及传统风电机组与电网的弱耦合性,影响电网频率稳定,成为制约风电发展的瓶颈。风电机组平稳输出是调频控制的基础,本项目创新性地采用液压储能系统提高液压型风力发电机组的调频能力。储能系统调控能量的储/放,抑制中、短期输出功率波动,提高电能质量,并进一步实时平衡电网负荷波动,提高调频能力。项目以机组多场耦合输出波动机理、传动系统动态辨识与模糊自适应控制、平稳输出与调频解耦控制为主要科学问题,开展了以下研究及创新:(1)分析了机组在捕获、传输、调控能量过程中的功率波动机理;(2)探索得到了机组平稳输出功率的多变量协调控制策略;(3)分析了机组动静态调频特性,探索机组能量调控策略;(4)根据电网调频要求,结合机组调频特性、储能系统能量储/放特点,探索得到了机组同时实现平稳输出与调频的解耦控制方法。项目研究成果将提高机组的电能质量和调频能力,增强机组电网适应性,为风电大规模并网装机奠定理论和技术基础。.项目期间共在国内外权威期刊上公开发表论文13篇,其中EI或者SCI检索的论文10篇,申请发明专利6项,其中授权5项,公开1项,成果转化专利技术转让2项,发表软件著作权2篇,培养博士研究生2名,培养硕士研究生9名。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
基于被动变阻尼装置高层结构风振控制效果对比分析
基于限流级差配合的城市配电网高选择性继电保护方案
超声无线输能通道的PSPICE等效电路研究
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
液压型风力发电机组输出功率波动机理及平抑控制研究
液压型落地式风力发电机组谐振机理与抑制控制研究
液压型风力发电机组低电压穿越控制基础理论研究
带分布式储能的双馈风力发电系统孤岛运行控制方法