Stretchable electrochromic devices display promising applications and bright market prospects in flexible displays and wearable electronics, and they have aroused widespread interest most recently by chemists, materials and mechanics scientists. Development of intrinsically stretchable conducting polymers with high electrochromic performances is very significant from both theoretical and practical aspects. However, design and synthesis of intrinsically stretchable conducting polymers suffice for applications remains a great challenge due to the lack of effective synthetic methodology. Also, many relative fundamental scientific questions for these materials, such as structure-property relationship, strain-property relationship, and corresponding device fabrication and optimization, etc., are not well understood. In this project, the concept of incorporating dynamic non-covalent crosslinking between flexible polymer chains will be employed to achieve high stretchability and self-healing properties for electrochromic conducting polymers. 2,6-Pyridine dicarboxamide (PDCA) is chosen to introduce hydrogen bonding within the flexible polymer backbone of poly(3,4-ethylenedioxythiophene)s-based structures (PEDOTs) with outstanding electrochromic performances since this unit contains two amide groups possessing moderate hydrogen-bonding strength, allowing the formation of a polymer network without drastically increasing the tensile modulus of the material. A series of intrinsically stretchable PEDOTs cross-linked by hydrogen-bonding from PDCA will be designed and synthesized via Stille/Suzuki coupling reaction. Then the properties of the resulting polymer materials, such as structural information, spectroscopic properties, electrochromic properties, electrical conductivity, and mechanical properties, etc., will be investigated in detail. Further, those polymers with superior performance will be chosen to fabricate stretchable electrochromic devices, whose performances will be improved by optimizing preparing technology and working conditions. Finally, the structure-property relationship and strain-property relationship of these polymers and devices will be summarized and explored to provide theory instruction and technique basis for future research.
可拉伸电致变色器件在柔性显示及可穿戴电子设备领域具有广阔的应用价值及市场开发前景,正在引起国际范围内的广泛关注。高性能本征可拉伸导电聚合物电致变色材料有望实现该领域的新突破,然而目前许多科学问题如聚合物合成方法学、结构-性能关联、应变-性能关联及器件制作工艺等尚未有效解决。基于良好的前期工作基础,本项目拟采用动态非共价交联法,以2,6-吡啶二甲酰胺类单元(PDCA)作为链间氢键交联结构,嵌入电致变色性能优异的聚(3,4-二氧乙撑噻吩)类导电聚合物(PEDOTs)主链,设计合成出系列氢键交联本征可拉伸PEDOTs电致变色新材料;系统研究聚合物的结构及电致变色、力学等各项性能,揭示本征可拉伸PEDOTs的结构-性能、应变-性能关联规律;筛选性能优良的材料,构建可拉伸电致变色器件,开展器件制作工艺优化及各项性能评估,为可拉伸导电聚合物电致变色材料的制备及器件研究提供一定的理论指导与技术支撑。
可拉伸电致变色器件在柔性显示及可穿戴电子设备领域具有广阔的应用价值及市场开发前景,正在引起国际范围内的广泛关注。高性能本征可拉伸导电聚合物电致变色材料有望实现该领域的新突破,然而目前许多科学问题如聚合物合成方法学、结构-性能关联、应变-性能关联及器件制作工艺等尚未有效解决。本项目在申请人前期成功合成部分噻吩衍生物的基础上,先后合成了噻吩-己基/十二烷基吡啶三氮唑、3,4-乙撑二氧噻吩-己基/吡啶三氮唑、3,4-乙撑二氧噻吩-十二烷基吡啶、3-甲/己/辛基噻吩-己基吡啶三氮唑、3-甲/己/辛基噻吩-十二烷基吡啶三氮唑、吡啶并[3,4-b]吡嗪-EDOT、(3-(4-氟苯基)噻吩)及3,4-二氧乙撑噻吩(EDOT)衍生物/类似物等50余种化合物单体,并设计合成了系列噻吩、己基/吡啶三氮唑、甲/己/辛基噻吩-己基吡啶三氮唑等与3,4-二氧乙撑噻吩(EDOT)等结构的共聚前驱体10余种,建立氢键交联的本征可拉伸PEDOTs电致变色新材料前驱体的合成方法学;研究了各化合物的电化学聚合行为,优化了聚合物制备条件。系统研究了聚合物的结构及电致变色、力学等各项性能,探讨了PEDOTs类可拉伸聚合物的结构-性能、应变-性能关联规律;筛选出了性能优良的聚合物,初步探讨并构建了可拉伸电致变色器件,开展器件制作工艺优化及电致变色、力学和抗疲劳性能评估;在系统优化器件性能基础上,进一步设计了电致变色纹身、可拉伸电致变色显示屏,探讨了本征可拉伸电致变色器件在日常生活中的实际应用价值。因此,在项目研究过程中,负责人及课题组成员对这些聚合物材料的其他性能也进行了系列研究,获得了一些有趣的结果,并进行了相关报道。共计发表在Nature communications、Science advances、Journal of Materials Chemistry C、Electrochimica Acta等学术期刊上发表论文21篇(影响因子10.0以上4篇),申请中国专利22项,申请美国发明专利1项,其中授权中国专利11项。获奖江西省自然奖一等奖1项,江西省级教学成果奖一等奖1项;参加国际学术会议6次、国内学术会议16次,引进博士2名、培养研究生27名。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
内点最大化与冗余点控制的小型无人机遥感图像配准
吲哚类导电高分子的电致变色性能及其电致变色器件
以多酸作为电致变色材料构筑光电致变色器件的研究
具有电致变色/电致动功能的柔性仿生材料的双重响应机制研究、性能调控及其器件设计
本征可弹性拉伸锂离子全电池制备及其结构与性能实时分析