Thermal-driven actuator materials based on carbon nanotube or graphene can demonstrate obvious deformation under light or electrical stimulation. They have become one of the hot topics in the field of intelligent materials. However, there are still some scientific problems in this kind of material, which are needed to be solved urgently. For example, the actuation is caused by the difference in the thermal expansion of the bilayer structure. If the actuation mechanism is only limited to thermal expansion, it is very difficult to further increase the deformation. Furthermore, complex deformation is difficult to be realized by the simple bilayer structure. These issues together constrain the further development of this kind of material. This project aims to seek a breakthrough in the actuation mechanism. We propose a dual-mode actuation mechanism including “thermal expansion” and “thermal-dehydration contraction”. We construct an actuator material based on bilayer heterogeneous carbon-based composite, so that it is expected to show large deformation: one layer of humidity-sensitive material based on graphene oxide / polymer composite is introduced into the bilayer structure, while the other layer of thermal-expansion material based on high-orientation carbon nanotube / polymer composite is also introduced into the bilayer structure. The microstructure evolution of humidity-sensitive material during hydration / dehydration process and its relationship with temperature or humidity are studied. The intrinsic actuation mechanisms of material deformation are investigated. The relationship between the anisotropy and the deformation property of the material is also studied. The material is modified and optimized by theoretical simulation together with experiment. In the end, the controllable fabrication of actuator material with large deformation and complex deformation will be realized. The research results will have a broad application prospects in the fields of artificial muscle, robot, bionics and so on.
基于碳纳米管/石墨烯的热致动材料可在光/电刺激下产生明显形变,近年来成为智能材料领域的关注热点之一。然而仍有若干科学问题亟待解决,例如:形变是由双层结构热膨胀量不同导致,若仅局限于热膨胀原理,欲再增大形变非常困难;另外,简单双层结构难以实现复杂形变。这些问题共同制约了该类材料的发展。本项目拟在形变机制上寻求突破,提出“热膨胀”与“受热失水收缩”的双重驱动机制,构建双层异质碳基复合致动材料,则其有望展现大形变:双层结构中的一层引入基于氧化石墨烯/高分子复合材料的湿度敏感材料,另一层引入基于取向碳纳米管/高分子复合材料的热膨胀材料。拟研究湿度敏感材料吸水/失水过程的微结构演变及其与温度、湿度的关系;研究材料形变的内在机制;研究材料各向异性与形变性能的关系;通过理论结合实验对材料结构进行调控优化;最终实现可控制备具有大形变和复杂形变的致动材料。成果在人工肌肉、机器人、仿生学等领域将有广阔应用前景
基于碳纳米管/石墨烯的热致动材料可在光/电刺激下产生明显形变,近年来成为智能材料领域的关注热点之一。然而仍有若干科学问题亟待解决,例如:形变是由双层结构热膨胀量不同导致,若仅局限于热膨胀原理,欲再增大形变非常困难;另外,简单双层结构难以实现复杂形变。这些问题共同制约了该类材料的发展。本项目在形变机制上寻求突破,利用“热膨胀”与“受热失水收缩”的双重驱动机制,提出激光打印、水愈合与水焊接等制备方法,构建双层异质或单层非对称表面结构的碳基/高分子复合致动材料,研究材料微结构演变及其与温度、湿度的关系,研究材料形变的内在机制,成功制备了具有大形变与可编程复杂形变的致动器。此外,还开拓性地在多功能致动器方面进行了探索研究。我们的研究为碳基/高分子复合致动材料的制备与应用提供了新的思路,成果在人工肌肉、软体机器人、仿生学等领域将有广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
适用于带中段并联电抗器的电缆线路的参数识别纵联保护新原理
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
光致形变功能高分子材料研究
快速大形变下高分子纳米复合材料的非线性流变行为研究
基于上转换发光的液晶高分子复合材料光致形变研究
基于高定向碳纳米管的大形变电热致动器的研究与设计