A new qualitative learning algorithm for feedforword neural networks is presented. In which weights are divided into rule types describing properties of weights and rule strength. The rule type of weights can be easily trained by back-propagation of superior contradiction. The qualitative learning theory is of many advantages, which lacked in traditional BP algorithm.The research provides necessary theory basis for the discovery of qualitative learning principle and the improvement of learning speed of neural networks. Some important researches on multi-mediea are also developed.
本项目提出和研究一种新颖的前馈神经网的定性学习算法,将权值用规则类型和规则强度表示,规则类型描述权值的性质;利用优势矛盾的反向传播快速学习各层权的规则类型。该定性学习理论具有传统的BP算法缺乏的许多优点如高速度和自适应能力。该研究为揭示突触类型的定性计算原理和提高神经网的学习速度提供必要的理论基础。.
{{i.achievement_title}}
数据更新时间:2023-05-31
现代优化理论与应用
汽车侧倾运动安全主动悬架LQG控制器设计方法
含饱和非线性的主动悬架系统自适应控制
城市生活垃圾热值的特征变量选择方法及预测建模
基于卷积神经网络的JPEG图像隐写分析参照图像生成方法
前馈神经网络的奇异学习动态研究
多层前馈神经网络信号放大的研究
前馈神经网络变结构理论研究
前馈神经网络学习算法的设计与分析