Perfluoroalkyl acids (PFAAs) is an emerging class of persistent organic pollutants (POPs) that has been widely used and ubiquitously disseminated. Due to the high thermal and chemical stability of C-F bond, PFAAs is extremely resistant to traditional chemical and biological degradations. Vitamin B12 (VB12) is a natural cofactor that can catalyze various reductive dehalogenation processes. However, the reductive defluorination of PFAAs catalyzed by VB12 has a relatively low efficiency and relies strongly on the reaction temperature. In view of the drawbacks, a synergetic system of sulfidated zerovalent iron (S-ZVI) and VB12 was proposed as a new strategy to efficiently catalyze the reductive degradation and defluorination of PFAAs. S-ZVI not only serves as the electron donor, but also activates C-F bond, and therefore lowers the activation energy of C-F bond cleavage. Meanwhile, S-ZVI is expected to enhance the electron transfer, consequently improving the reduction efficiency of PFAAs..The main objectives are: 1) to investigate the effects of S-ZVI/VB12 synergetic system on the degradation and defluorination of PFAAs congeners, precursors and isomers and analyze the quantitative structure-activity relationship (QSAR); 2) to detect the steady-state intermediates and propose the potential degradation pathway; 3) to unravel the catalytic mechanism and electron transfer process based on the microcosmic characterization and theoretical calculation results; 4) to investigate the influential factors and explore the possible natural degradation pathway of PFAAs. The results will contribute to the development of a novel synergetic system of S-ZVI/VB12, and advance its application in the area of pollution control and environmental remediation.
全氟烷基酸(PFAAs)是一类应用和分布广泛的新型持久性有机污染物。由于C-F键键能高,PFAAs的化学稳定性强,这类化合物的降解脱氟十分困难。维生素B12(VB12)是一种能够高效催化还原脱卤的天然辅酶因子,然而以往研究表明VB12催化PFAAs脱氟的效率低,且需要较高的反应温度。因此,本项目提出利用硫化零价铁(S-ZVI)协同VB12催化还原PFAAs脱氟的新思路。S-ZVI不仅起到电子供体的作用,还能够活化C-F键,降低反应所需的活化能;同时增强电子传递,提高PFAAs还原效率。本研究将考察该体系对不同PFAAs同系物、前体物和同分异构体催化还原脱氟效果,并进行分子构效关系分析;分析稳态产物和还原降解途径;借助微观表征和理论计算探究催化机理和电子传递机制;分析环境影响因素,探索可能存在的自然降解途径。成果有助于发展S-ZVI/VB12新型协同催化还原体系在PFAAs污染修复中的应用。
全氟烷基酸(PFAAs)是一类应用和分布广泛的新型持久性有机污染物。由于C-F键键能高,这类化合物的降解脱氟十分困难。本研究以全氟辛烷磺酸(PFOS)为目标污染物,考察了硫化零价铁/维生素B12(S-ZVI/VB12)体系对PFOS去除和脱氟的效能;探明了关键影响因素和最佳工艺条件;阐明了VB12的催化过程,以及S-ZVI和VB12之间的电子传递机理和协同作用机制;并通过降解产物监测,表明了PFOS氢解脱氟、邻位消去、以及C-C键断裂的降解脱氟途径。重要结果及关键数据如下:(1)考察了S-ZVI/VB12催化还原体系对水中PFOS不同异构体的降解和脱氟效果,结果表明在30 g/L S-ZVI(S/Fe=0.025),300 μM VB12,70 ℃,初始pH不调(pH=8.8)条件下,初始浓度为300 μM的PFOS 2h吸附去除率可达99.8%,96h脱氟率可达20.2%。直链PFOS(L-PFOS)更易于吸附在S-ZVI表面,却难以被VB12催化还原降解(72h的降解率<7.5%);支链PFOS(br-PFOS)有较高的降解速率,拟一级速率常数为0.516 h−1。(2)通过UV-Vis、XAFS、ESR、XPS等表征以及UPLC-QTOF对中间产物的监测,揭示了S-ZVI/VB12体系催化机理和电子转移机制如下:首先,S-ZVI将VB12- Co(Ⅲ)还原为Co(Ⅱ);被还原的VB12通过Co−F结合进攻PFOS上的F原子,并发生SN2亲核取代反应;进而PFOS通过还原消去途径和氢解途径脱掉F−,生成多氟代不饱和的磺酸盐和羧酸盐。S-ZVI除作为还原剂为VB12提供电子,还能够通过对PFOS的吸附作用活化C-F键及提供限域表面。(3)系统考察了温度、pH、S/Fe比、S-ZVI浓度和VB12浓度对PFOS去除和脱氟的影响;同时考察了PFOS在Na2S/VB12和天然硫铁矿/VB12体系下的降解和脱氟,表明了该催化过程在自然条件下发生的可能性,为PFOS的自然归趋和生物降解研究奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
农超对接模式中利益分配问题研究
2016年夏秋季南极布兰斯菲尔德海峡威氏棘冰鱼脂肪酸组成及其食性指示研究
基于细粒度词表示的命名实体识别研究
基于全模式全聚焦方法的裂纹超声成像定量检测
全氟辛酸和全氟辛基磺酸的光催化还原降解研究
全氟烷基炔酸酯及全氟烷基炔腈砌块在含氟有机化合物立体选择性合成中的应用
全氟烷基表面活性剂厌氧生物降解特性与还原脱氟机理研究
菌生过渡金属辅酶仿生系统催化还原降解全氟有机酸机理研究