TiO2 is an important photocatalyst in energy and environmental science. The synthesis of visible-light response and highly active TiO2 remains a challenge. N-type oxygen-defected TiO2-x is promising photocatalyst for visible light utilization, and the applicant recently synthesized metal-defected Ti1-xO2 with p-type conductivity. In this project, nanoscaled p-n homojunction will be constructed using these two materials, which is expected to have three advantages: utilizing visible light by oxygen-defected TiO2-x, improving charge separation by the junction, and enhancing stability of TiO2-x by moving away photo-induced holes. Two key scientific issues, namely controllable synthesis of nanoscaled p-n homojunction, and charge transfer mechanism of p-n junction and its optimization, will be addressed. First, to maximize the junction interface, the synthesis method will be explored to fabricate Ti1-xO2 and TiO2-x in nano-size and quantum-size, and to further decorate the surface of nanoparticles with quantum particles of another photocatalyst. Then two interface models, namely TiO2-x QDs decorated Ti1-xO2 and Ti1-xO2 QDs decorated TiO2-x, will be studied to correlate the relationship between photocatalytic performance and interface structure. Finally, to optimize the interface structure, a DFT computation will be conducted to understand the mechanism of electron transfer across the interface and the critical influence factors. This project is expected to synthesize TiO2 with high visible-light activity and high stability, to deeply understand how the junction interface works, and thus to provide new insights in rational design and fabrication of highly efficient photocatalyst.
TiO2是能源和环境化工的重要光催化剂,制备能利用可见光、催化活性高的TiO2仍是挑战。n型导电的氧缺陷型TiO2-x是极具前景的可见光催化剂,申请人近期制备了p型导电和高活性的金属缺陷型Ti1-xO2。本项目将以二者为基础,在纳米尺度构建p-n同质结,利用结界面的电荷分离来增强可见光活性和稳定性。围绕“纳米尺度p-n同质结的可控合成”和“p-n同质结界面的作用机制及匹配优化”关键科学问题,发展纳米和量子尺寸Ti1-xO2和TiO2-x制备方法,将量子点生长于纳米颗粒表面,实现结界面最大化;以两种结界面(TiO2-xQD/Ti1-xO2、Ti1-xO2QD/TiO2-x)为模型,建立界面结构与催化性能的构效关系;采用理论计算阐述结界面电荷传递机理及影响因素,实现结界面匹配优化。项目可望制备一种具有高可见光活性和高稳定性的TiO2,深入理解界面工作机制,为高效光催化剂设计和制备提供新思路。
光催化是利用太阳能驱动化学反应,进行水分解产氢、污染物脱除、合成功能化学品的重要方式,也是减少对化石能源的依赖,实现碳中和的重要途径。构筑高效光催化剂是提高光催化效率、推动光催化迈向应用的关键。本项目基于DFT理论计算和实验研究,建立了半导体催化剂金属缺陷和氧缺陷结构的可控制备方法,以及纳米尺度p-n同质结和异质结半导体的可控制备方法,阐明了缺陷结构及结界面对光催化性能的影响规律,揭示了半导体体相及跨越结界面的电荷传递机制,实现了纳米尺度p-n结的可控合成和结界面的匹配优化,为高效光催化剂的设计和制备提供了途径。主要成果如下:(1)提出金属缺陷抑制载流子(电子和空穴)复合的机制:费米面附近的电子自旋方向高度极化,传输过程中形成与空穴相反的自旋方向,从根本上抑制二者复合,近乎100%自旋极化的Ti0.936O2的催化活性比常规TiO2提高20倍;(2)阐述氧缺陷结构促进半导体活性的机制:催化剂对光的吸收,电荷转移效率及光催化水氧化活性与氧缺陷的浓度有密切关系,氧缺陷大幅度降低速控步骤的活化能,限制逆反应的;(3)构建p-n同质结TiO2和p-n同质结ZnO:p-n结界面显著促进电荷分离和传递,光催化产氢活性分别较金属缺陷(p型)和氧缺陷(n型)提高1.7和7.5,光催化MO降解活性分别提高2.3和10.8;(4)构建p-n异质结TiO2/g-C3N4:协同提高催化剂的可见光利用和电荷传递能力,光催化产氢、光催化降解MO和苯酚的活性分别为g-C3N4的5.7倍、3.6倍和1.6倍。在Nat. Comm.、Angew. Chem. Int. Ed.、Adv. Mat.、催化学报、物理化学学报等发表SCI收录论文31篇,授权美国发明专利1项、中国发明专利2项,申请中国发明专利1项。培养青年人才2名,毕业研究生6名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
基于二维材料的自旋-轨道矩研究进展
Mn-TiO2/TiO2同质p-n结纳米阵列薄膜的生长及光电性能调控
基于ZnO单晶的半导体p-n结光催化剂的构建与产氢机理研究
表面氧缺陷对光催化剂的光生电荷分离和迁移作用的研究
缺陷态对TiO2基纳米异质结光催化性能影响机理研究