子群的共轭类和自同构导子对有限群结构的影响

基本信息
批准号:11761079
项目类别:地区科学基金项目
资助金额:36.00
负责人:孟伟
学科分类:
依托单位:桂林电子科技大学
批准年份:2017
结题年份:2021
起止时间:2018-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:史江涛,凌波,马万青,刘士虎,郑英丽,保玉俊
关键词:
Sylow子群共轭类正规化子可解群自同构导子
结项摘要

In my recent research,the applicant gave the lower bounds on the numbers of conjugacy classes of some non-special subgroups of finite groups in terms of |\pi(G)| and gave some complete classifications of finite groups with certain particular conditions.In addition,the applicant also investigated the structure of finite groups in which the automizers of all cyclic subgroups are small.In the project,we will extend and generalize our privious research and give a complete investigation of the influence of the numbers of conjugacy classes and the automizers of non-special subgroups on the structure of finite groups.The datails are as follows: . (1)To give complete classifications of finite groups in which the numbers of conjugacy classes of some non-specail subgroups satisfy certain particular conditions..(2)To investigate the function relations between the numbers of conjugacy classes of non-special subgroups and other quantitative properties of finite groups and characterize the solvabilities of finite groups. .(3)To investigate the finite groups in which the automizer of every non-nilpotent subgroup(every non-normal non-abelian subgroup,etc.)is large(small)..(4)To give complete characterizations of the finite groups in which the automizer of every abelian subgroup(every non-abelian subgroup,etc.)is either large or small.

在近几年的研究中,申请人通过|\pi(G)|给出了若干非特殊子群共轭类数的下界,并给出了某些特定情形的有限群的完全分类.申请人同时还研究了循环子群具有小的自同构导子的有限群的结构.在本项目中,我们将改进和推广之前的研究工作,完整地研究非特殊子群的共轭类数和自同构导子对有限群结构的影响,具体研究内容包含以下四个方面:.(1)完全分类非特殊子群的共轭类数满足特定条件的有限群;.(2)研究非特殊子群的共轭类数和群的其他数量性质之间的函数关系并刻画群的可解性;.(3)完全刻画非幂零子群、非正规的非交换子群等分别具有大的和小的自同构导子的有限群;.(4)完全刻画交换子群、非交换子群等的自同构导子要么是小的要么是大的有限群.

项目摘要

本项目主要研究非特殊子群的共轭类和自同构导子对有限群结构的影响,主要包括以下内容:.(1)给出了具有较少非循环和非交换子群共轭类的有限群结构..(2)获得了有限群中非交换子群同阶类数以及子群个数的下界. .(3)给出了二极大子群皆交换的有限群的同构分类; 研究了偶阶子群为幂零群以及MS-群的有限群结构..(4)刻画了每个交换子群要么具有小、要么具有大的自同构导子的有限群.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

一种加权距离连续K中心选址问题求解方法

一种加权距离连续K中心选址问题求解方法

DOI:
发表时间:2020
2

抗生素在肿瘤发生发展及免疫治疗中的作用

抗生素在肿瘤发生发展及免疫治疗中的作用

DOI:10.3760/cma.j.cn371439-20200423-00009
发表时间:2021
3

异质环境中西尼罗河病毒稳态问题解的存在唯一性

异质环境中西尼罗河病毒稳态问题解的存在唯一性

DOI:10.16119/j.cnki.issn1671-6876.2017.04.001
发表时间:2017
4

基于可拓学倾斜软岩巷道支护效果评价方法

基于可拓学倾斜软岩巷道支护效果评价方法

DOI:10.13545/j.cnki.jmse.2020.03.008
发表时间:2020
5

基于5G毫米波通信的高速公路车联网任务卸载算法研究

基于5G毫米波通信的高速公路车联网任务卸载算法研究

DOI:10.11896/jsjkx.211100198
发表时间:2022

孟伟的其他基金

批准号:11361075
批准年份:2013
资助金额:45.00
项目类别:地区科学基金项目
批准号:51705381
批准年份:2017
资助金额:24.00
项目类别:青年科学基金项目
批准号:61803105
批准年份:2018
资助金额:27.00
项目类别:青年科学基金项目

相似国自然基金

1

元素和子群的共轭类对有限群结构的影响

批准号:11901169
批准年份:2019
负责人:陈瑞芳
学科分类:A0104
资助金额:26.00
项目类别:青年科学基金项目
2

无限群子群结构及有限群共轭类长的相关问题

批准号:19771013
批准年份:1997
负责人:张志让
学科分类:A0104
资助金额:6.50
项目类别:面上项目
3

有限p群的非正规子群的共轭类数与群结构的研究

批准号:11701254
批准年份:2017
负责人:李立莉
学科分类:A0104
资助金额:23.00
项目类别:青年科学基金项目
4

有限群的子群格与广幂自同构

批准号:11771271
批准年份:2017
负责人:郭秀云
学科分类:A0104
资助金额:48.00
项目类别:面上项目