The practical application of photocatalytic membrane, an integrated technology of photocatalysis and membrane filtration, is hindered for the low degradation/filtration efficiency, fouling, and poor recyclability, mainly attributed to the lack of functional materials with novel structure and unique properties, the limited understanding of the charge transfer and degradation mechanisms, and the inefficient photocatalytic membrane reactor. In this proposed project, we expect to solve the aforementioned problems through the proposed membrane materials, mechanism and technology innovations. Specifically, (1) for the first time construct a novel core-shell structured heterojunction, i.e., TiO2(001) nanosheets grafted on ZnFe2O4 nanotubes, and further modify this nanostructure by introducing defects (Ti3+/oxygen vacancy) and N-doped graphene. All the components will generate a synergy to enhance the quantum efficiency for pollutants degradation because of the visible light response and facilitated charge transfer, and suppress membrane fouling with a good long-term stability and durability; (2) deeply gain insights into the heterojunction interface and charge transfer mechanism, and understand the mechanisms of organics adsorption/activation/degradation and metal ions competitive adsorption by various ex-situ spectroscopic techniques; (3) design a new multi-stage continuous photocatalytic membrane reactor, and comprehensively evaluate the membrane performance for the removal of specific organics (rhodamine B, bisphenol A, humic acid) and heavy metal ions (Pb2+, Cd2+, Cr3+), long-term durability, regeneration and recyclability, and establish the correlations between materials structure-property-activity. The findings in this project will advance the development of novel membrane materials and provide viable options for water treatment.
目前光催化过滤技术依然缺乏具有新颖结构与独特功能的薄膜材料、对材料的界面化学、电荷转移和有机物降解以及金属离子竞争吸附机制的认知不够深入、缺少先进的反应装置。本项目拟从材料、机理和技术创新出发,首先可控合成多孔核壳结构ZnFe2O4@TiO2异质结,即将高能活性晶面TiO2(001)纳米薄片嫁接到ZnFe2O4纳米管上,通过引入缺陷、与N-掺杂石墨烯耦合进一步提高量子效率、可见光吸收和电荷转移,构建出能级界面匹配的异质结膜,采用先进的谱学与表面技术阐明异质结膜的界面结构和电荷转移途径,设计一种多级连续光催化薄膜过滤装置,系统评价膜材料去除水中特定有机物(罗丹明B、双酚A、腐殖酸)和重金属离子(Pb2+、Cd2+、Cr3+)的效率、耐久力和循环再生性能,探索有机物降解路径与金属离子竞争吸附机理,阐明异质结膜材料的构效关系。该项目实施将为开发新型水处理膜材料与光催化过滤提供理论依据和智力支持。
目前光催化过滤技术依然缺乏具有新颖结构与独特功能的薄膜材料、对材料的界面化学、电荷转移和有机物降解以及金属离子竞争吸附机制的认知不够深入、缺少先进的反应装置。本项目从材料、机理和技术创新出发,首先可控合成了多孔核壳结构ZnFe2O4@TiO2异质结,即将高能活性晶面TiO2(001)纳米薄片嫁接到ZnFe2O4纳米管上,再通过引入缺陷、与N-掺杂石墨烯耦合进一步提高量子效率、可见光吸收和电荷转移,构建出了能级界面匹配的异质结膜,采用先进的谱学与表面技术阐明异质结膜的界面结构和电荷转移途径,设计了一种多级连续光催化薄膜过滤装置,系统评价了膜材料去除水中特定有机物(罗丹明B、双酚A、腐殖酸)和重金属离子(Pb2+、Cd2+、Cr3+)的效率、耐久力和循环再生性能,探索了有机物降解路径与金属离子竞争吸附机理,阐明了异质结膜材料的构效关系。该项目实施为开发新型水处理膜材料与光催化过滤提供了理论依据和智力支持。项目研究期间发表了SCI收录学术论文20多篇,授权发明专利10余项,培养研究生11名,其中四名研究生学位论文获江西省优秀学位论文,获江西省自然科学一等奖等省部级奖励5项。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
濒危植物海南龙血树种子休眠机理及其生态学意义
石墨烯基TiO2 复合材料的表征及其可见光催化活性研究
K+对AgInS2的可见光催化活性的影响
政策工具影响耕地保护效果的区域异质性——基于中国省际面板数据的实证研究
铋基异质结高效界面构建及其同步去除水中重金属和芳香类有机物的机理研究
高可控GaN基纳米线及其异质核壳结构的生长与性能研究
新型光催化氧化降解有机物/还原重金属离子耦合纳滤膜体系的构建及其自洁净机理研究
新型核壳SERS探针的制备及其痕量含氧重金属离子检测研究