故障互连网络中含经过指定边的无错误哈密顿圈问题研究

基本信息
批准号:11626114
项目类别:数学天元基金项目
资助金额:3.00
负责人:程冬琴
学科分类:
依托单位:暨南大学
批准年份:2016
结题年份:2017
起止时间:2017-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:郑佳欢,熊剑廷,冯薇影
关键词:
互连网络最长圈哈密顿圈容错子图嵌入
结项摘要

Interconnection network (network for short) is usually represented by a graph where vertices represent processors and edges represent communication links between processors. Study of topological properties of interconnection networks is an essential part for the study of parallel and distributed computing. One major aspect of designing the topological structure of a network is to consider its Hamiltonian properties, since the topological structure containing Hamiltonian path or Hamiltonian cycle can effectively simulate the alogorithms designed on linear array or ring. The study of kinds of Hamiltonian properties of interconnection networks has attracted many scholars’ attention. However, the study of fault-free Hamiltonian cycle passing through prescribed edges on faulty interconnection networks is rare, which is the main research content of this project. We will apply mathematical induction, finding the corresponding fault-free Hamiltonian cycle in every n-1 dimensional sub-networks, and then combining to a desired Hamiltonian cycle in n dimensional networks. We believe that our theoretical research will have an important significance to the Hamiltonian properties of networks and will lay a theoretical foundation for the potential application.

互连网络(简称网络)通常用一个图来表示,其中的点表示处理器,边表示处理器之间的连线。研究互连网络的拓扑性质是研究并行和分布式计算的一个重要部分。设计网络拓扑结构的一个主要方面是考虑哈密顿性质,因为包含哈密顿路或哈密顿圈的拓扑结构可以有效地模拟许多在线性列阵或环上设计的算法。研究互连网络的各种哈密顿性质已经引起了许多学者的关注,然而研究在故障互连网络中含有经过指定边的无错误哈密顿圈问题目前还比较少,这是本项目的主要研究内容。本项目将采用数学归纳法,在n-1维网络中找到对应的无错误的哈密顿圈,再合并成n维网络中预期得到的哈密顿圈。本项目的理论研究在网络的哈密顿性质上具有重要的理论意义,也为网络的潜在应用奠定理论基础。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于多色集合理论的医院异常工作流处理建模

基于多色集合理论的医院异常工作流处理建模

DOI:
发表时间:2020
2

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

DOI:10.11842/wst.20190724002
发表时间:2020
3

传统聚落中民间信仰建筑的流布、组织及仪式空间——以闽南慈济宫为例

传统聚落中民间信仰建筑的流布、组织及仪式空间——以闽南慈济宫为例

DOI:
发表时间:2017
4

基于直观图的三支概念获取及属性特征分析

基于直观图的三支概念获取及属性特征分析

DOI:10.3778/j.issn.1673-9418.2104120
发表时间:
5

含饱和非线性的主动悬架系统自适应控制

含饱和非线性的主动悬架系统自适应控制

DOI:10.3969/j.issn.1674-0696.2020.10.20
发表时间:2020

程冬琴的其他基金

相似国自然基金

1

互连网络中若干优化问题研究

批准号:10371028
批准年份:2003
负责人:陈光亭
学科分类:A0406
资助金额:17.00
项目类别:面上项目
2

互连网络的大故障模式容错性能研究

批准号:10771227
批准年份:2007
负责人:杨小帆
学科分类:A0501
资助金额:21.00
项目类别:面上项目
3

基于并行系统互连网络的条件连通性及故障诊断问题的研究

批准号:61402317
批准年份:2014
负责人:原军
学科分类:F0201
资助金额:26.00
项目类别:青年科学基金项目
4

互连网络的非精确故障诊断与顺序故障诊断研究

批准号:61862035
批准年份:2018
负责人:郭晨
学科分类:F0204
资助金额:34.00
项目类别:地区科学基金项目