Coronary microembolization has been an independent risk factor for poor clinical outcomes in patients with coronary heart disease, however, the mechanisms underlying coronary microembolization-induced myocardial injury remain elusive. It has been reported that the reactive oxygen species released by damaged mitochondria play an important role in activating NLRP3 inflammasome, which priming pyroptosis. Dynamin-related protein 1 (DRP1) has been demonstrated to be modified by S-nitrosylation, which has an impact on mitochondrial dynamics. According to our previous research, mitochondria dysfunction after coronary microembolization induces reactive oxygen species accumulation and NLRP3 inflammasome-dependent pyroptosis, however, how this process primes remains unknown. Our previous proteomics analysis depicted several energy metabolic abnormalities in coronary microembolization mice and the expression changes of DRP1 and thioredoxin 1 (TRX1), raising the conjecture that TRX1 might affect mitochondrial function and pyroptosis via regulating the post translation modification of DRP1 in a de-nitrosylation manner. In the present study, we aim to discover the mechanisms underlying TRX1-regulated pyroptosis, using the TRX1-transgenic mice, primary culture of neonate rat myocardial cells and HEK293T cells to observe the alterations of mitochondrial function and pyroptosis after the gain-of-function and loss-of function of TRX1. Our study will shed light on novel pharmacological targets for treatment of coronary microembolization.
冠状动脉微栓塞(CME)是冠心病患者不良预后的独立危险因素,但其导致心肌损伤的机制尚不明确。研究发现线粒体功能紊乱释放的活性氧是激活NLRP3炎症小体的重要因素,后者可导致细胞焦亡。动力相关蛋白1(DRP1)受S-亚硝基化修饰调控,进而影响线粒体动力学。我们前期研究发现CME后心肌线粒体结构和功能紊乱,活性氧爆发,NLRP3炎症小体显著激活,导致心肌焦亡,然而这一过程的具体机制尚不明确。蛋白质组学分析显示CME后心肌能量代谢相关通路异常,伴随DRP1和硫氧还蛋白1(TRX1)表达改变,我们推测TRX1依靠其脱S-亚硝基作用调控DRP1翻译后修饰影响线粒体功能和活性氧产生,进而影响细胞焦亡。我们拟构建TRX1过表达小鼠,使用原代心肌细胞、HEK293T细胞,观察TRX1表达变化对线粒体功能和细胞焦亡的影响,明确TRX1调控CME后心肌细胞焦亡的机制,为CME后心肌损伤的防治提供新思路。
在冠脉介入术(PCI)后,有1/3左右的患者存在持续的心肌损伤,且50-75% PCI围手术期心肌损伤(PMI)与冠状动脉微栓塞(CME)相关。CME是冠心病患者不良预后的独立危险因素,但其导致心肌损伤的机制尚不明确。研究发现活性氧是激活NLRP3炎症小体的重要因素,后者可导致细胞焦亡。近年来,蛋白质巯基亚硝基化修饰已经受到了越来越广泛的关注,蛋白质的巯基亚硝基化修饰参与多种心血管疾病的调节,如心律失常、心肌梗死、心肌细胞凋亡等。心肌细胞蛋白质S-亚硝基化修饰是否参与CME导致的心肌损伤尚无相关研究。本课题首先使用RNA-seq技术分析PMI患者PBMC基因表达情况,发现PMI患者PBMC中NLRP3炎症小体显著激活。CME小鼠通过诱导心肌细胞NLRP3炎症小体依赖的细胞焦亡,介导心肌损伤和心功能损害。进一步采用生物素转化和链霉亲和素富集方法获取CME小鼠心肌组织发生S-亚硝基化修饰的所有蛋白,质谱分析检测出789个蛋白,生物信息学分析这些蛋白富集在三羧酸循环中,其中ACO2差异明显。进一步鉴定出ACO2第126位半胱氨酸发生S-亚硝基化修饰。构建ACO2位点突变的腺相关病毒和腺病毒,分别转染小鼠和体外细胞,发现ACO2的S-亚硝基化修饰在CME诱导心肌损伤中起到重要作用。CME后心肌组织脱S-亚硝基化酶TRX1显著下降,进一步研究表明TRX1调控ACO2的S-亚硝基化修饰。研究结果可为CME的治疗拓展新方向。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
基于分形维数和支持向量机的串联电弧故障诊断方法
HMGB1通过调控细胞焦亡与自噬参与冠状动脉微栓塞致心肌损伤的机制研究
蛋白S-亚硝基化在铝诱导花生细胞程序性死亡中的作用及调节机制
circRNA调控心肌梗死后心肌细胞焦亡的分子网络及干预研究
IKKε对心肌梗死后心肌细胞自噬与焦亡交互作用的调控及其机制研究