Since the unmanned helicopter (UH) has high order model, strong nonlinearity and multi-flight modes and other characteristics, the flight control system of an UH is a multi-input and multi-output nonlinear system with strong nonlinearity and strong coupling. Its anti-disturbance ability is fragile. At the same time, the unmanned helicopter mission has diversity, and the work environment is usually changing. In general, the UH suffers the comprehensive influence coming form wind, wind shear, turbulence mutation and dynamic environment disturbance. Considering control input saturation, it is easy to cause the control oscillation of the UH, and even lead to crash. Therefore, in order to achieve high stability robust control for dynamic disturbance environment and input saturation of an unmanned helicopter, this project explores the mechanism of disturbance and coupling mechanism of wind, wind shear and turbulence, mutation of unmanned helicopter flight, and establish the high confidence mathematical model of unmanned helicopter flight motion under the disturbances. Based on the established mathematical model, the robust anti-disturbance control scheme using nonlinear disturbance observer is proposed to realize the anti-disturbance stable control under the influence of dynamic disturbance for the UH. Furthermore, by explicit consideration of input saturation effects, the robust anti-disturbance constrained control and the robust anti-disturbance constrained control satisfying multi performance indexes requirement are developed for the UH based on nonlinear disturbance observer. These developed control schemes can improve the ability to reject disturbance and accomplish the task of unmanned helicopter.
由于无人直升机具有模型阶次高、非线性特性强和飞行模态数量多等特点,因而其飞行控制系统是一个具有多变量、强非线性和强耦合的时变多输入多输出非线性系统,且抗干扰能力十分脆弱。同时无人直升机执行任务具有多样性,工作环境不断变化,经常受到阵风、风切变、突变和紊流等动态环境干扰的综合影响,再加上控制操纵存在饱和限制,因而极易造成控制振荡,甚至导致摔机。因此为了实现动态干扰环境和输入饱和作用下无人直升机的高稳定强鲁棒控制,本项目探索阵风、风切变、突变和紊流等对无人直升机飞行的扰动机理与耦合机制,建立动态扰动下的无人直升机高置信度飞行运动数学模型。在此基础上提出基于干扰观测器的无人直升机鲁棒抗扰飞行控制方法,实现动态干扰下的无人直升机鲁棒飞行控制。同时明确考虑输入饱和的影响,提出无人直升机鲁棒抗干扰受限控制技术和满足多性能指标的无人直升机鲁棒抗干扰受限控制技术,提高无人直升机抗干扰和任务执行能力。
由于无人直升机具有模型阶次高、非线性特性强和飞行模态数量多等特点,因而其飞行控制系统是一个具有多变量、强非线性和强耦合的时变多输入多输出非线性系统,且抗干扰能力十分脆弱。同时无人直升机执行任务具有多样性,工作环境不断变化,经常受到阵风、风切变、突变和紊流等动态环境干扰的综合影响,再加上控制操纵存在饱和限制,因而极易造成控制振荡,甚至导致摔机。因此为了实现动态干扰环境和输入饱和作用下无人直升机的高稳定强鲁棒控制,本项目探索了阵风、风切变、突变和紊流等对无人直升机飞行的扰动机理与耦合机制,建立了扰动下的无人直升机飞行运动数学模型。在此基础上研究了基于干扰观测器的无人直升机鲁棒抗扰飞行控制方法,实现动态干扰下的无人直升机鲁棒飞行控制。同时明确考虑输入饱和的影响,研究了无人直升机鲁棒抗干扰受限控制技术和满足多性能指标的无人直升机鲁棒抗干扰受限控制技术,提高了无人直升机抗干扰和任务完成能力。在国内外核心学术期刊和会议上发表论文40篇,其中SCI收录29篇,出版专著2部,申请发明专利5项。培养相关研究方向硕士研究生13名和博士生10名,获得国家自然科学二等奖1项(排名第2),获国防科技进步二等奖2项(分别排名第1和第9)。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
多源数据驱动CNN-GRU模型的公交客流量分类预测
面向森林防火的无人直升机复合抗干扰飞行控制技术研究
直升机低阶鲁棒飞行控制器设计及仿真研究
斜翼近空间飞行器非线性鲁棒受限控制技术研究
四旋翼无人机大机动高精度鲁棒飞行控制